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INTRODUCTION

The"prime goal of the Planetary Quarm_tine Subtask under file Voyager Phase 1A Task C

4

Study is to show the effect of the Planetal_, Quarmltine requirements on the Voyager mission

and its elements.

¢%

U Figure I is a simplified work flow diagram showing tile major Planetary Quarantine subtasks

._ and their interrelationships. Activities performed on this contract are being documented
' _ in bimonthly progress reports and a separate series of teclmical reports and memos. The

present report presents the activities to date under the Basic Math Model DevelopmentSubtask. Section 1 discusses the basic questions Involved and tb ,_ selected approaeh to be

used. Section 2 describes the mechanization of the basic concepts. Two previous reports,
VOY-C2-TR7 and VOY-C2-TR4, presented work done in the basic parametric analysis

subtasks for Orbit Mechanics and Entry Analysis. Section 3 of the present report presents
the work performed in taking the basic entry results and converting them to a form suitable

for incorporation into the mafll model computer programs. Section 4 of this report gives
an example of how the math model is used in performing sensitivity studies, the next major

subtask in the Planetary Quarantine Study. Appendix A gives a complete listing of theprograms developed for this task.

Table I lists the reports issued to date on the Planetary Quarantine Task.

BASIC STUDIES

PROPULSION SOURCES

LOOSE PARTICLES

MICROMETEORDID F_JECTA JSPECIFIC APPLICATION TO |

q MISSION AND HARDWARE
BIOLOGICAL STUDIES

CHARGE/CLOUD PHENOMENA 1

-I I , H H

PLUME ANALYSIS

P

BASIC MATH SENSITIVITY TRADEOFF VOYAGER _

• MODEL DEVEIDPMENT STUDIES _rUDIES |RECOMMENDA'TIoN

BA_C PARAMETRIC ANALYS_ ] "_

!

[ Y ALYS.
• Figure L Planetary _aranttne Task, Simplified Work Flow Dis_'sm

| _

] 969004372-006



, Table I. Report _ndex for Voyager Planetary Quarantine Task C
VOY

C2 Title Author Date

TR 1 On the Dnstributien of Density at Vachon 16 August 1966
Orbital Altitudes in the Martian

Atmosphere.

TR 2 Prelim. Asscssment of the Good July 1966
Micrometeor_ Jd Phr.nomena.

. TR 3 Influence of Space Vehicle McKee 1 September 1966
Charge and Plasma Field on the
Quarantine of the Planet Mars.

TR 4 Voyager Mmrs Planetary Parker 16 September 1966
QuarantineParticle13urnup Bcerger

Study. BurrOws

TR 5 An Investigation into the Oberta 23 September 1966
Feasibility of Condllcting an
Experiment To Determine the
Effects o! Rocket Combustion

on the V/ability of Mlcronr-
_mll_smso

TR 6 An Approximate Plume Analysis Hamel 30 September 1966
for the Voyager, Task C,
Planetary Quarantine Study.

Tr 7 Voyager Mars Quarantine- Kore_stein 30 November 1966
Ejected Particle Trajectory
Study.

TM-I Preliminary Combinatorial T. Greea October 1966
Probability Model for the Voy-
ager Quarantine Problem
('Phases 1.2, $).

B TM-2 Voyager _lars P.Q. Thermal M. Martin October 19_6
Kill of Bacteria during Mars
Entry.

TMo3 Loose Particle Investigation- R. Walte October 1966
A_ Evaluation of the Problem.

TM-4 Mlcrometeoroid Effects - R. Good October 1966
Analytical Stud/es Status
Report- September 30.1966.

TM-5 Voyager P.Q. Literature J. Mascm October 1966
Search. Cold 3as Systems.

TM-6 Prelln_nary B/o Burden M. Korsterer October 1966
Cm - Voyager P.Q.

TM-7 Combv, sUov Lethality Exper- Oberbt November 1966
Iment - W.atus Report.

TM-8 Rtdlsttou Effects on the Petarscn Decembar 1966
Vlabi_ty Of Microorpntsms. Konstorer

TM-9 CLE-/nteg. Dev, Test Plan Oberta De.tuber 1966
GllUs

TM-1O M/cromlteoroJd Studies - Good Doc_mbsr 1_6

ShffmS RepOrt. 12/66 Bshr_r

TMoll Mlcr_z_orold Slmuls_on Koutoz_r Jsmuary 11_/
Experimontsl Studies -
81Md[usRIport. Jan, 19if/. Semen

mar=
,TM-I9 Cold Oss ACS Exlmrlmmtal Mason Jsmary 10¢/

-s_tonncport
Jsuuaxy 1_.

TM-I$ Lo_e Part_le lnvestfgstian - JaMs Jsnm17 1_
8tmtus Report, Jmmary HHrt. Rests

... ...
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SECTION 1APPROACH TO MATH MODEL

I.i RATIONALE

1.1.1 STATEMENT OF PROBLEM

The problem of determining the probability of contaminating Mars before time T, ar_ a
result of a Voyager mission, is essentially one of identifying all possible contaminatio:l

sources associated with the "Voyager hardware" (launch vehicle, spacecraft, lander, et_. )
and describing the various mechanisms that will cause viable organisms to reach the surface

of Mars. The events of interest, therefore, can be described generically as follows---
One or more viable organisms launched from earth on Voyager hardware are placed on an

impact trajectory to the surface of Mars using some mechanism and rurvive all potential i
kill mechanisms (e. g., U.V., atmospheric entry heating, etc. ) and arrive, survive and

spread on the surface of Mars before time T. The probability of the occurrence of all such) events, then, is the probability of contaminating Mars before time T as a result of the

missions.

Figure I-I illustrates the approach being used in matrix form. The rows of the matrix
enumerate all possible sources of contamination while the columns of the matrix are descrip-

five of how particles find their way to the surface of Mars. For purposes of illustration, only
four sources of contamination are listed.

l
-1

i

(- / ;;'.;

'

] 969004372-0] 0
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ROUTE TO MARS

(
• I 2 3 4 5 6 ? 8 9 I0 II [

[
' _ to=_ _ _ _ [_ ;_

ATTITUDE CONTROL

GAS SYSTEH

ORBIT I_'SE RTION

ENGINE _i
LOOSE PARTICLES

MICRO- METEOROID

Figure 1-1. Math Model Format

-" To determine how viable organisms might find their way to the surface of Mars, one must

first consider the initial loading on the vehicle, second the transport process that the

particles undergo in arriving at the surface of Mars, and third the potential kill mechan/sms

that the viable organisms are subjected to enroute to Mars. Colunm 1 calls for input data on

the initial loading of viable organisms on the vehicle. Column 2 calls for data describing

the probability that the viable organisms/n/tially on the vehicle wK1 survive during the trip

before the t/me of ejection. Data descr_w_g the manner in which the particles are ejected

from the vehicle is called for in Column 3. Column 4 describes the process by which the

ejected p_rticles find their way to Mars. Columns _ through 10 call for data on the probabil/ty

that the orsan/sms will be k/lied enroute to Mars. t

Finally after performing tim operations indicated by Columns 1 through 10 on all of the souroo8 I

of eontamfnatfon ind/eated by the rows, the nmnber _ v/abl_ orsmflsms that reach the sur- __

face of Mars and survive before t/me T/s g/yen in Colmnn 11. Column 11 then is totalled

_ for all poss/ble sources of contam/natio_ glvl_g the total number of _ _ that

/

reaoh the s_ of Mars and survive before _ 'J'.

"1
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1.1.2 INPUT
Figure 1-2 illustrates the flow of information by considering some important elements of the

prob)em,---the initial loading of viabJe organisms, the trm_sport process, the Mars
atmosphere entry heating kill mechanism, and finally the number of viable organisms

arriving at the surface of Mars and surviving before time T. Consider first the initial
loading of viable organisms on the vehicle. In what terms might the initial loading be given?

It might be stated as an average number of the several measurements of the loading. A
more conservative approach would be to state it as some upper or maximum value of several

measurements of the loading. A realistic description would be to describe this numb¢r as
several ranges of values, each with an associated probability. Figure 1-3 graphically shows

this type description. Note from the figure that the initial loading could be small in
number, that is near 0, or it could be very large, as high as _ay one million. The probabtliy

however, that the number is very small, or very large, is a small probability. The mostprobable value is somewhere in the range of one thousand. The actual intervals shown here

_) were arbitrarily selected. Any appropriate intervals may be used.

ORNT SIZE

ATM(_PHERE

--'- TRANSFER TRAJECTORY MODEL

g I ENTRY HEATING MODEL

6

n r- m[ .o,o,..
_1 [ ""

O wc¢

i_ _ ].-s. r,,mq_Udiout_

14I i
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" ' _ " P5

L

[
0 lO ]00 1, 000 10, 000 100, 000 1, 000, 000 [

_ITIAL LO,a,DL'_G - V.O.

Figure 1-3. Input Data Format [

Consider next the transport process. By this point in the problem, the manner in which ["
Lparticles leave the spacecraft has been considered. The trajectory the ejected particles

take must be considered to determine if riley can impact the surface of Mars by time T. An r

LP analysis must be made to determine if the particle will enter the atmosphere and eventually

impact the surface of Mars. Some of the significant parameters associated with this analysis r

are the M of the particle, the velocity at which the particle leaves the spacecraft, and
L

C A

the angle a_which it leaves the spacecraft. This analysis has been described in detail in r
document number- VOY-C2-TRT.

[
Although the particle may take on a trajectory that will cause it to reach Mars, viable

organisms carried by this particle may be killed enroute. As an example of one of the kill
t_

mecl.anisms, consider the atmosphere entry heating. The time-temperature history of the

particle as it enters the Mars atmosphere and continues through the atmosphere to the sur-

face of Mars must be considered to determine ff the organisms will survive this kill
M

mech:'_dsm. Parameters associated with this analysis are again the CD A of the particle, i
the velocity and angle at which the particle enters the atmosphere of Mars, and the material

properties of the particle, such as emissivity. This analysis is discussed in Section 5 of

this report.

)
-__

• 1-4 Ii " t
]l

_ : _ . , ,_........:.-._,__"..._ " _ _

1969004372-013



I[_ Figure 1-4 ill_strates ._ t)']J,_ data that might be applicable to the description of the para-meters associated with the transpor" process and the atmosphere entry heating. The three

] _ types of densify functio,m that we encounler are a) the smooth continuous probability density
i L]
[ function, b) a continuous probability density function having a finite number of intervals with

i [1 the density uniform over each interval, and c) a discrete type probability density function
IU

which takes on only certain values, such as integers, each value having some probability of

i _ occurrence. Each of these probability density functions may be approximated by either of
U M

the other two. Parameters such as CDA , velocity, angle, emissivity, etc., are

normally described by continuous type de_mity functions. Such parameters as number of
viable organisms, however, are best described by discrete type density functions. If it is

sufficient to describe the number as lyingwithin some range, however, then :he second type
of density function may be used to describe the number of viable organisms.

[1
1.1.3 OUTPUT [ f_"_

_ Consider now the number of viable organisms
- that reach the Mars atmosphere or surface

and survive before time T, which is the a
output of the contamination analysis for a

given source. Figure 1-5 illustrates the
type

density function that might represent this | ,___

A discrete density function is
output. type

used to represent the number of viable

q organisms region near zero.
in the This b

allows one to look at the probability of getting

] one or more organlsms, twoormore J I I ] I Iorganisms, three or more organisms, etc. l
I

| For the larger numbers it may be sufficient e

merely to state the probability that the Figure 1-4. Alternate Data Formats '

number lies within some range or ranges,

_) such between five and hundred, or between one hundred and one million. Based on
a8 one

- the hypothetical information in Figure 1-5. the probability that one or more viable organisms

1-5

li "

..... _-- ....... _._._ _ _ . _. ........ _Vtt_
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L
(

will reach Mars surface and continue to survive before time T is 10 -3. This.. is arrived I_,

L
at by either adding up the probabilities for 1, 2, 3, 4, 5, and on up, or by subti'acling the

probability of zero (which is 0. 999) from 1. This hypothetical density function also shows

that the probability of four or more viable organisms reaching Mars surface and continuing

to survive before time T is 10 -4. If, for example, the criteria for contamination of Mars [1

was one or more organisms reaching Mars and the constraint is that the probability of

contaminating Mars must not exceed 10 -4, then the constraint would not have been met _]J

based on the information shown in the figure. Yf, on the other hand, as many as three

viable organisms reaching Mars could be tolerated without representing contamination, then [_

the constraint of 10-4 would have been met. If it were to cost a great deal more to meet the
U

constraint of 10-4 using the criteria of one or more viable organisms representing contam- u
ination, then some reevaluation of the problem may be in order.

E

l

D0. 0006
TOTAL PROBABILITY =

0.0002 f O.0000095 (5-100)

f _ TOTAL PROBABILITY =
/ /

//-, / o.o.. ,lO lO0O.0,0
t t/ ,/ \

0 9 3 4 5 100 1,000,000 _]

NO. OF V.O.'8REACHING MARS' SURFACE AND CONTINUING TO SURVIVE W

PP:OR TO TIME T ' " -_

iFigure 1-5. Typical Output Format

1.2 COMPUTATIONA L PROB LE MS !i
_ Primarily, there are three distinct kinds of computational problems associated with the m../

determination of the probability of contaminating Mars before time T. The first is that of _

1-6 ._

_:_. ,. I II _ ...................._............
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I
1

operating on an initial probability de'_sity function by a set of conditional probability density

i functions and thus generating a marginal probability density function as the output. The

second is that of summing probability density functions. The third is that of generating the

I probability density function on a random variable that has been d_fined as some function of

one or more other random variables, each having its own a _robability density func;ion.

i

1.2.1 CONDITIONAL PROB_ BILITY DENSITY FUNCTIONS

This computation arises il,' sire tions such as:

a. Given a range of sizes of particles (8") (probability density function on size), what
are the number of viable organisms (O) carried by these particles? This

computation is represented graphically by Figure 1-6.

j- P(5)

1 P (Oil _ _

I / -/ / /
o / / /

Ii

I I
"I

Figure 1-6. Conditional Probability Density Functions

I 1-7 /3
| i ....._.____-........................
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The output (or marginal) distribution is computed as follows:

In general notation, the above can be written in one statement as follows:

j=4

P(Oi)= _ P(OilSj)'p(Sj) ; i=l, 2, 3
j=l

b. Given a range of number of viable organisms that are subjected to a certain kill

C_ mechanism (X) (prob. density function on number), what are the numbers of viableorganisms (Y) that survive the kill mechmlism? This computation is represented
graphically by Figure 1-7.

! Y' _"

",i / _'_-i
"_"-" / \\ / / /g/__+___¢_
d / !',,b/ V
t -7 ---"-- -TZ -T,/ i I , ,<.,I

•'-7"-/
0

Figure 1-?. Conditional Probability Density Funotions

1-8

il .,:--_ -- _-- I i ....................... " ............. : - - -
,:_l_i_ ........................... = _
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¢

1.2.2 SUMMATION OF PROBABILITY DENSITY FUNCTIONS
(

This computation arises, primarily, in arriving at the total number of viable organisms
that will reach the surface of Mars as a result of all possible contamination so,_rces.

Conceptually, the computation consists of adding all possible combinations of numbers from
the several probability density functions, computihg the probability of each combination,

establishing groups of common sums of numbers, and then computing the probability of each
group of common sums. A very simplified illustration of this is given in Figure 1-8 and

Tables 1 and 2. Two discrete probability density functions are considered for this purpose.
0.30

0.2 o.1 0.1 o.1 2 o_z olo_ o.o! _ 4 ! _.. o._4_oio2o;ol oo
1 _ 3 , , 3 _) 0 1 , 3 . 5 . 7

_NO. V.O. 'S SOURCE NO. 1 NO- V.O.'S SOURCE NO. 2) NO. V,O.'S REACHING bIARSv

TABLE I TABLE 2

ORIGINAL COMBLNA"I_ONS COMMONSUMS OF _ UbIDEI1S GROUPED

(V.O. I+V, O. 2) P (V.O. l .2] V.O.I._V. O. 2 P (V.O.I �p� �......0+0=0 0.5-0.6 =0.30 0 0.30

0+1=1 ! 0.3"0.2 =0.10 t, 1 0.22 =(0.1"_0.12)
0+2--2 0.3.0.1 =0.0._ r_ 2 0.15 ffi(0.05+0.04+0.06)

_ 0_S-3 0.5-0.05=0.025 3 0.125 - (0.035_. 02+0.02+0. 06)

t,/
- 0+4=4 ! 0.5" 0.05=0. 025 4 0.125 ffi(0. 025+0.01+0.01+0. 0240.06

140=1 O.2"0.6 =0. :2 5 0. 045 = (0.01+0. 005+0.01+0.02)
- 1+1,,2 O.2"0.2 =0.04 6 0. 02 = (0. 003+0. 005+0.01)

1+2=$ 0.2- 0.1 =0, 02 7 0. O1= (0. 005+0. 005)
1+3=4 o.'_- o.os=0.o1 $ 0.0o5

1.,4=5 o. 2. o. 05=0. o1 SUM_ 1.00"-----6
z+0=z o.1.o._ =0.o_
2+1=0 0.1.0.2 =0.02

2+2=4 0.1-0.1 =0.01 !
2+3,,5 0.1.0.05=0.005

2,=6 0.1"0.05=0.005 i

34.0_ 0.1"0.0 =0.0G
:1+1"4 0.1"0,3 '0.02
$+2-5 0.1.0.1 "0.01
$+3_6 0.1" 0.05"0.005
$'#4=2 O.1" O.05=0.005

U 4+0,4 0.1"0.6 =0.06
4+1=5 0,1"0.2 "0.02
4+3-6 O.1,0,1 "0.01
4+3"/ O, 1. O.05=0. 005
4+4,,@ O,1"0.05-0. 005

U SUM = 1. 000
Figure 1-8. Summation of Probability Density Functions

1.2.3 COMBINATION OF PROBABILITY DENSITY FUNCTIONS ACCORDING TO

SPECIFIED EQUATION

This type computation arises in the interplanetary trajectory analysis, orbit mechanics

analysis, atmosphere entry heating analysis, etc. Conceptually, the computation is done

in the same manner as for the summation of random variables. Most equations of interest,

obviously, are much more complex than a simple summation, but the technique is essentially

the same.

g I-9
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[J
1, 3 IMPLEMENTATION

lP,

There are four basic ways of implementing the computational process described in the

previous section.

1.3.1 CLOSED FORM SOLUTIOt_ r_

This approach requires that the probability density functions be described in closed U

mathematical form. The data from which these density functious are derived rarely lend

themselves to a closed form mathematical description. However, some density functions U

may be described in this form either directly or through curve fitting.
U

Even when all of the density functions of interest are known in closed mathematical form, it n

is generally not possible to perform the necessary mathematical integrations in order to

arrive at a closed form solution of the problem of interest. This difficulty becomes greatly _,
magnified when the density functions must be combined according to some complex equation.

( 1.3.2 MONTE CARLO SIMULATION

Conceptually, this is a very siraple technique in terms of formulating the problem. It n

consists, essentially, of randomly selecting a value from each density function, operating on U

the set of values in the appropriate manner (i. e., summation, multiplication, division, or n
by some complex equation} and then repeating this process a sufficient number of times until U

the true density solution has been closely simulated. n
The shortcoming of this approach is that, when a large number of random variables are _

involved, the number of samples required by the Monte Carlo approach to simulate the

true answer is extremely large, thus requiring a large amount of high speed computer time. i

B'A further difficulty is that there is no technique available to determine in advance just how

large the sample must be in order to approach the true answer with a given level of accuracy.

1. $. $ NUMERICAL APPROACH (DISCRETE VALUES) _

This technique calls for combining all possible values of the parame_rs and computing

the probability of each combination so that an output value is generated with an associated

I-I0 "......... i__,_,'_-_li i !II ........ : ............. -......-= ...............:-+-'-: ......... _............ :
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probability. Mtcr all combinations have been generated, the output values are then grouped
into common groupings and the probability of each group is computed, thus describing the

probability deusity function for tile output. The total number of combinations can be
extremely large if there are a large number of parameters to be considered simultaneously.

Quite often the approach becomes impractical for this reason.

1.3.4 NUMERICAL APPROACH (INTERVAL CONCEPT)
This approach is also a straightforward technique of using discrete approximations of

continuous functions, considering all possible combination of values, computing the probability
of each combination of values, operating on the set of values appropriately to generate tbe

output value, grouping similar output values and then computing the probability of each
group. Each density function is divided into intervals so that the combination of values

referred to above are combinations of intervals of values and not combinations of discrete
values. Furthermore, the density functions are combined pairwise in such a manner as to

__ reduce the total number of combinations under consideration.

To _llustrate the interval approach a transfer function (V = W • X + Y/Z), such as shown in
Figure 1-9, is assumed. W, X, Y and Z each have probability density functions as shown.

The density functions are truncated at lower and upper values and the parameters W, X, Y,
Z may take on any values within the range of their respective lower and upper values. The

figures should be interpreted as follows: Looking first at the probability density function on
W---"The probability that the value lies between 2 and 3 is 0.1; between 3 and 4 is 0.7; and

O between 4 and 5 is 0.2.

V = W'X _-Y/Z

0.? 0.?

g X +V ,.

g " 2 3 4 S 10 16 sO 9S $ IS _ 1|$ 1 | 4 il
W-._ X-._ Y-,,_ Z ''4D

Figure 1-9. Intervals of Variables Problem

II " ¢ I
• . . . . .. ,.,, .... . iii...... II ii i i .................

• ,,". ......................... :2 ............ .." _
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The probability density functions on X, Y, and Z are interpreted in the same way as those, r
t

for W. However, there is one difference. The widths of the intervals on W and X are

not uniform. As stated earlier, any appropriate widths of intervals may be used - they need
L

not be uniform.

[
Figure 1-10 illustrates the combination of parameters by considering the first part of the

transfer function V = W • X + Y/Z ---; that is, W • X. Consider first the interval 2 -3 [
t.

on W and the interval 10 - 15 on X, All values of W • X resulting from these intervals will

lie in a new interval having as a lower value 2 • 10 = 20, and an upper value 3 • 15 = 45. [

The probability associated with this new interval is 0. 1 • 0.2 -- 0.02. This is simpl.y the

probability that the value of W lies between 2 and 3 and the value of X lies between 10 and [

15. The output of this combination of intervals is shown in Row 1 of the table. Columns 1

and 2 show the lower and upper limits of the new in_rval generated by combining the firs.*, r

interval of W with the first interval of X. Column 3 shows the probability that the new

_ value W • X lies in tim new interval. Columns 4, 5 and 6 are representative of the intervals _
i

- into which the outputs of the transfer of W " X are to be grouped, The probability shown in

Column 3 that is associated with the interval indicated by Columns 1 and 2 is appropriately

prorated into Columns 4, 5 and 6. This process is repeated for each combination of

intervals. Because W has three intervals and X has three intervals, there are nine r_

combinations of intervals to be considered.

iW-X

| $ 4 & N N 04 155
W--o. v,._ W. X,-p

I_0 Q Ldlle L_ U
:1_ {M LN L_4 Le_g

n LM Llll Lm,I _

|,,N 40 LI4 _kO4T 4_110

41 N La LN4 L_

k

UqJO IRJ I_II _ • N •

Figure 1-10. Intervals of Variables Solutl(m
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The interv_tls into which the outputs of the transfer of W" X are to be grovped have been
arbitrarily designated as 20-50, 50-70 and 70-125.

The new interval generated by the first combination of intervals is 20-45 with an associated

probability of 0.02 (this is showu in the first three columns - Row 1 of the table). Because
this interval is wholly contained by the first interval of the output density function, the

entire 0.02 is put into the 20-50 interval.

Consider now the second combination of intervals (i. e., - W -_ 2-3 an(i X -_ 15-20). The new
interval generated by this combination will have as its lower limit 2 " 15 = 30 and as its

upper limit 3 • 20 - 60. The probability associated with this interval 30-60 is 0.1 • 0.6 = 0.06
(this is shown in the first three columns - Row 2 of the table). This probability is prorated

to the 20-50 interval by the ratio 30-50/30-60, and to the 50-70 interval by the ratio 50-60/20

30-60 (i. e., _-_ x 0.06 = 0.04 is put into the 20-50 output interval and _ x 0.06 = 0.02 is

_ put into the 50-70 output interval). The remainder of the nine combinations is done exactly
in the same manner. The probabilities in each of the output intervals are now totaled thus

defining the output probability density function. That is, the probability that the value of
the output, W • x, lies in the interval.

• 20-50 is 0.184 • 50-70 is 0.720 • 70-!25 is 0.096

The solution generated by this technique approaches the exact solution as we consider more
and more intervlas on the input parameters (i, e., as the width of the intervals approach

zero). This allows the analyst to test for convergence to "sufficient" accuracy as the
number of intervals considered are increased,

a . The rest of the computations for generating the output probability denBity function on V, when

V has been defined by V = W" X + Y/Z (shown in Figures I-II and 1-12), are accomplished
in basically the same manner as we have shown here. Figure 1-13 graphically representa

__ the total process. First operate on W and X aooord/ng to the transfer function to produce

the output W • X. Then operate on Y and Z according to tim transfer fmmt/on to produce

Y/Z. Finally, operate on (W • X) and (Y/Z) aocording to the transfer funoflon to produoe

{V=W. X �Y/Z).

I 1-18
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V::W.X * Y/Z O.70.7

I "- o., x + +
2 3 4 5 10 15 20 25 8 16 64 128 l 2 4 8

W--_ X.--_ Y ..-._ Z--_"v "_r

_.0 50 90 I_ I 8 _ 128

I (wx) -._ _/z)

] ] I I 10.0o88

v,_v-x + Y/z)

_) Figure 1-13. Intervals of Variables Solution

Not that the input and output ae.nsity functions may have any number of intervals - they may

vary in number from density funcUon to density function. In the case of some parameters,

a/argo number of intervals may be appropr/ate while in the ease of other parameters a

small number of _ntervals may be adequate.

The foUow/ng is a brief summary of the computation methods d/scussed above.

a. An analytical solution - that is, arriving a_ the output density function as a mathe-
matical expression in closed form - is generally no; _-..._tlcal, The input functions
usually cannot be expressed as closed form malhen,a('_ expressions. E_en i
when it is possible to do so, the solution for arr/v/ng at the output {/. e., the muli/ple
/nteg_'ations lhat must be performed) generally becomes lntraotable.

b. A mmer/cal solution utng a Monte Carlo almulat/ue _echn/que/s at best quut/omble.
Because th/s is basically a sm_pllng teehn/que, the question Is - how many samples
must be laken in Order to '_kquately" s/mulate the oulput? A good method for
arriving at an anmmr to th/s quest/on/s not available. Inchmtry's aperienne has

) /nd/ca0ed that, fu general, • wry _ number e( samples are requ/md, thus
requ/r/ng • lot d computer t/me. The prdblem gets espeo/a_ severe when _re
are • _ number ,_ Input random _ to be omskkrsd.

l-IS
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c. A numerical approach whereby an input probability density function is represented
by a set of discrete values each with an associated probability of occurrence---all
possible combinations of values from the parameters are generated with its
associated probability. The concept is very simple but there may also be time of
computation drawbacks associated with this technique. For example, let us consider
the problem of arriving at the total number of viable organisms reaching the
surface of M_rs. Assuming that we have done this for each possible source of
contamination and further assuming that there are 10G sources, we must now sum
up over all 100 sources, If we were to consider all possible combinations of sums,

we would have a very large number to compute. If e_ch density function were
described by only 3 discrete values there would be 31q00 ,_ums to compute. (This is
approximately equal to 1050. ) If each calculation were to take 10 -5 seconds on a
computer, the total uumber of seconds of computer time required would be 10 50/

105 _ 1045 seconds or approximately 1038 years of continuous computer operation.
If each density function was reuresented by 100 discrete values, the total number of
sums to compute would be 100100 or 10205 . It is immediately obvious that this is
not the method to use.

d. If the operation of summing was done pairwise, the total number of sums to be
computed would be drastically reduced. Using the same example as before (i. e.,
100 density function each having 3 discrete values) the technique is to:

• sum the first two density functions thus generating or 9 sums32

• group these values and approximate the resulting density function by 3 discrete
values

• continue this process until the 100th density function has been added thus defining
the final total.

The total number of sums that would have been generated is (100-1) • 32 or approximately

900. It is true that three points are not very representative of most probability density

functions. Therefore, consider 100 points on each density function. The palrwise approach

would yield a total of (100-1) 1002 or approximately 106 sums, If, as before, each

calculation took 10-5 sec d computer time, the time required would be 10t'/105- = 10 sec.

It is obvious then, that this is well within practical limits.

Now ff the "/nterval concept"/s considered which considers density functions puirwlse, we

see that the number of calculations are even further reduced. For example, ff we consider

30 intervals of values instead of 100 discrete values, we reduce the. last number of calculations

1-16
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of (2...2/ =1 It should be remembered that the interval approach allows( by a factor
j kloo] 25

you to constantly know the uppcr and lower bounds of the true value of the output. This

feature is required so that the analyst will have co_ffidcnee in the accuracy of his solution,
given a set of input data. ,.

]
1.4 COMPUTER PROGRAM DEVELOPMENT

To implement the calculations that have been described, a set of programs have been
developed that may be used on the remote access computer system. (also called the Desk

f Side Computer System). The computational difficulties are somewhat minimized when one

considers that high speed computers are available for the task. The problem is further

i minimized when one considers that desk side computer systems are available with the

capability of having many different programs in storage for immediate callup. This type of

system enables the analyst to work in his own office (or work area). An advantage of this is

that he has the appropriate information and material immediately (and conveniently) available

. to him ,--,d he can work at the computer as problems arise rather than storing up problems

for one big computer run.

A group of subprograms, such as described in Section 2 of this report, enables the analyst

to work on the total problem in pieces. This allows him to (1) become completely familiar

with file inner workings of the program and (2) give him the ability to make sensitivity, studies

on parameters within confined areas of the total problem. A further advantage of having a

group of subprograms, rather than one large integrated program, is that the analyst may

wish to change the program in certain areas, It is very difficult to do this when the program

has been developed as one integrated program,

i
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SECTION 2

THE DESK SIDE VERSION OF THE
VOY &GER P LANETARY QUARANTINE MAT H MO DE L

2.1 BASIC NUMERICAL PROCESS

The math model consists of a package of programs which help to provide insight into thef

various sensitivities of the effect of parameter values on random variables.

This section describes the key concepts involved in the development of the computer pro-

grams and contains a brief explanation of how to use each program.

The basic numerical process incorporated in many of the programs is the method of loading
an interval probability onto a selected grid pattern. This technique is used for both dis-

crete and continuous or interval probabilities. In the following runs the probability of 1. at
0., 0. to 1., 3., 0. to 3., 0. to4., .5 to 1.2, 1. to3.5, and 1.5 to 3, respectively, were

_ ) loaded into the basic grid pattern:

0., 0., 1., 1., 2., 2., 3., 3., 4., 4.

Repeated numbers indicate that a discrete probability could be assigned. The logic is as
follows:

0
If a discrete probability is given, it will either be loaded directly onto a discrete grid point

or added into the appropriate interval. For an interval, no probability will be added onto

discrete points but will be apportioned proportionately onto the grid pattern.

0
g

I 2-1. a',
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PRGGR&:4 TO LOAD PROD_DILITIES

NU;_BER. OUTPUT GRID VALUESt=IQ_Oo,O, jI._to*2=_2,.3"_3"*4o*A*

INTERVAL START_ END_ PRODABILITY==Oo,Oo_I-

RESULTING PRObaBILITIES
I.O_OE_CO 0.0_00_E-01 _.¢$00_CE-01 0.68_6¢_E-_I 0.00_000E-01
O.000090E-Ol g,O_OOO_E-Ol O,O_OGOOE-OI 0o0_0000E-01

INTERVAL START, END. PROBABILITYs=O-,Io.I*

RESULTING PROBABILITIES
0.000GOOE'_I l.OgOOOOE+00 0*000000E-_1 0-0_0000E-0! 0,000000E'01
0.000_00E-01 0.00000_E-01 g.OOOOgOE-OI 0.000000E-01

!

INTERVAL START. END. PROBABILITYs=3-.3*.I*

[
RESULTING PROBABILITIES

B.OOBOOgE-Ol 0,000000E-01 0,800000E-01 0.000000E-01 e.00900_E-OI
0.000090E-91 10000000E.00 0.006000E-01 0.000000E-91 [

|

[
INTERVAL STARTe END, PROBABILITYIm0*,3._I. r

RESULTING PROBABILITIES
l.OBOOe_E'G! 3.333333E'Ot e.e_eoe£-el 3.333333E-01 0.00_0E-01
3,333333E-01 OeOOOOOBE-el 9.OO0000E-Ol 6,OOOOgOE-61 {

il(

iI 2-3
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INTERVAL START, EHD, PRO_ADILITY:=G.,A*,I*

RESULTIP_G PROBABILITIESgoOSgg_OE-01 2*5_OOOE'OI O*00OB90E'GI 2.50Q_OBE'B! 0.00(_0_E-01
2°50ZOOOE-gl O*OGO(_E-OI 2.50BOOOE'Ol i_._gBOOE"BI

n

INTERVAL START, END, PROBABILITYs-".5, I .2,|°

0 'RESULTING PROBABILITIES
8.01_O0_E-.el 70 1A2657E-O! O.O_gg_E-O! 2.8571 43E-01 8.eOOOOOE-81

0._08_00E-01 O._Ol_BgSE-81 0.OGgggOE-Ol 8.0BOOgBE-81

q_
+- INTERVAL START, END, PROBABILITYI=I.,3.S, Io

0

0 i4.0000_0E-01 O.000000E-el 2,000_00E-01 0._0000E-01 +

0
IN_RVAL START_ END, PROBABILITYI=I,S,3,*I°

RES_INB PROBABILITIES

U Oog_gOgO£'OI 8oeOOBOOE'gl OoBOggOOE'8! 3o333333E'_1 O.0AOgOEE-AI
|

6-666667E'01 O,OOOOOO£'OI O,¢OBOOOE'Ol O,gOeOOO£-OI

g

V+

s4 i_

0 :i
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! 2.2 BINOMIAL PROBABILITIES f

A fundamental distribution which appears to be basic to much of our study is the binomial. [

If the probability that an organism survives an event is 0, then in repeated trials (n), the r
probability of survival X times is

f(x) = 0 x (1-0) n-x

The mean of this distribution is nO, which gives an indication of its shape. For smaller 0 [
tthe distribution piles up about x = 0 and becomes increasingly skewed to the right.

The numerical evaluation of this distribution becomes difficult if the above expression is [

used directly. [

Since f(x+l) = /n-x_ t 0 / = 1l(x) [

The recursion f(x + 1) = R(x) f(x) [

where f(o) = (1 - 8)n allows us to evaluate this distribution without the calculation of [
t.

factorials or other combinatorial formulas.

IA program called "BINOM" performs the above.

For large n, the recurston becomes less attractive for obvious reasons. In this case, if

The binomial can be approximated by the normal in a 30" range about the mean. Denoting [_

] the cumulative vahles of the normal by @ (X), the approximation is E

O |

,,-4 !

_.,___.;.,.,, .........,..
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Pr a_x _ b _-A ¢ +'2--# ¢

o - a /

0 . = ne, a=_]nO(l-O)

A program called "BINOMX" performs the above calculati_ls by utiUzing a techniqueI

developed and described in Reference 3.

It is recommended that "BINOMX" be used for n > 100.

The two following sets of examples illustrate the output of BINOM and BINOMX.

In BINOMX, the equivalent upper and lower bounds for the given first and last values are 'in terms of the standard normal distribution.

Note that essentially all (99. 99 percent approximately) of the probability lies between _3.

BINOH|AL PROBABILITIES READ PROBABILITY AND NdHB£RIf. IJle

READ PROBABILITY AND NUHBERIs. I,B VALUE PROBABILITY

0 3.486784(-81VALUE PROBABILITY I 3-874285(-ei
e I.BeveeeE.ee 2 1.937182£-81

3 5-739563E-82
• _ SUHn 1.0860090 4 1.116026E-62

U S 1.48803sEoe3
R_D PROBABILITY A_D NUMBERI=*Ie3 6 !.37781gE084

1 8.?4SeOeE-e6
VALUE PROBABILITY 8 3.64se_eE-07

D S ?.29eeeeE-ei 9 9.eeeeee(-a9I 2.43000gE-O| IO I.geSOOgEoJ8
2 2,yeeeeeE-e2
3 I.eeeeeec-e3 SUM- I.eoeoeee

SUMs Ioe_ROgO
READ PROBABILITY AND NUHBERIaoI,?

VAL_E PROBABILITY
O 4.T82969[001
I 3-?BSOSYE-OI.
8 J.84gO29EoOI

3 R.296150('e2

i

4 2-SSISOOE-g3 i-
S IÙ?OlOOOEoJ4 ,

!
6 6.3eeeeet-o6 i_

SUI'g8 IogOeosOO i
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[
NORMAL APP_GKIHATION TO BINOHIAL [

READ FIRST, LAST VALUE, NUMBERs PROBABILITYI=IO.,50.,550.,.!

STANDARD NORMAL LIHITS*C_ -0.646799E+01 -0.639602E+00 L
PROBABILITY= 0°261216E+00

READ FIRST, LAST VALUE, NUHBER, PROBABILITYI=IO.,100.,550.,°| [

STANDARD NORMAL LIMITS*e*** "0.646709E+01 0.646709E+0|

PROBABILITY= 0.100000E+0! E

READ FIRST, LAST VALUE, NUMBER, PROBABILITY_=20°,30°,550°,,I

STANDARD NORMAL LIMITS***** -0.504575E+0! -0.348228E+0l L
PROBABILITY= 0.248358E-03

READ FIRST, LAST VALUE, NUMBER, PROBABILITYI=20.,25°,I00°,°5 FI

STANDARD NORMAL LIMITS***** -0.610000E+0l -0.490000E+01 J

READ FIRST,LAST VALUE, NdMBER, PROBABILITYS=25.,?5°,I00 *°5 k_e

STANDARD NORMAL LIMITS*COo* -O.51POOOE+OI 0.510000E+01PROBABILITY= 0°100000E p�´READ FIRST, LAST VALUE, NUMBER, PROBABILITYS=30.,60°,I00°,°5 [

STANDARD NORMAL LIMITS***** -0,410000E <�Œ�0,210000E+01

PRORABILITY= 0.982115E+00
READ FIRST*LAST VALUE, NUMBER, PROBABILITYI=40.*60*,I00**°5

STANDARD NORMAL LIMITS***** -0.210000E+01 0.210000E+01
PROBABILITY= 0-964271E+00 _

I

READ FIRST, LAST VALUE, NUMBER* PROBABILITYIm45**55**I00**.$ n
M

STANDARD NORMAL LIMITS***** -0.110000E.01 0.110000E �$*PROBABILITYs 0,728668E+00

n
READ FIRST, LAST VALUE, NUNBER*PROBABILIT¥Im47**53**I00._*$ L_

STANDARD NORMAL LIMITS***** -0.700000£+00 e.?eeooeE+go
PROBABILITYm 0.516073E+00 II

READ FIRST*LAST VALUE* NUMBER, PROBABILITYImSSTOP l" ;
READY. il

2-e
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0
2.3 BASIC COMBINATORIAL MODEL
The basic module in the numerical math model is the two-segment program titled "Basic 1,

Basic 2. " The primary function of the program is to combine probabilities in the following
form:

EVENTS

i i ' I I M l---_--'-,L-2--_ J-4 T---f ........
ROW _ I Ii I' II i
----_.... I----_----_- ......... +---4 ...........

i | I ! I IRow_I i ' J. . ' ,
sornCES---'i---'l' i---,.... _-'-_..........

I I I i I II i

__o_w__n____4 - - - -_.... ' .... _- --t ..................
I I I I I II I I I , I

---J .... I----J ..... I I___= I............
I I I I I I

I I I I

I I I I q .... I................... I'---'_1 --- 1-- - T ........... , ....
I I I I I I

Viable organisms can be thought of as being available from various sources about the space-

craft and environs. The number available conceivably could be a random variable and thus

can be represented as a "row" probability distribution. Each event (represented by a column)

can be thought of as altering the row (source) probability distribution. The simplest way

'i of representing the effect of an event is to say that an organism has probability of surviving

the event. If it can be hypothesized that each organism has the same probability, then the

oo-nditional distribution of survival is of a binomial nature. That is, given n organisms, the

probability of x survivors is

D pr (x/n) = (n) cX (1-_) n'x .

the resulting marshal probal_lity

pr (=) = z pr(=) (_) (" (1-() ' I

-. _ LL
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( where N is file total nun_ber of organisms before the event. If the binomial hypothesis is

not satisfactory any conditional distribution, can be used in place of pr (x/n). It is primarily

the function of this program to calculate each succeeding marginal probability as one courses

through the events. As a row is completed, the resulting random variables can be added by [

another program called "BUGS" which is described elsewhere.

[
1. Read in basic GRID pattern.

f

2. Read in Row probability source distribution along with its own grid pattern. L

3. Adjust source probability distribution to standard grid pattern. [
L

[
TYPE I, II, OR KI EVENTS

PROBABILITY [

INPUT OUTPUT _.MARGINAL PROBABILITY PROCESS MARGINAL PROBABILITY

K ffi 1 CELL K

OUTPUT [ROW MARGINAL.. .
PROBABILITY

KffiK+I [

1. Read in row probability end points.
m

2. Read in usoolated prolxtbflities.

8. Re_d In the _ set of end poin_ to be uNd clprlnK the oourm of row
_dmhticms.

- . 4. Adjust the _ pro_ dfstrl_ to the _ set of md po_ts.

-(1 " !'

i .
L
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5. Read in code word:
I: Binomial probabilities

D 2: Conditional distributions at arbitrary nature

3: Proportion, probability

4: Scale the standard end points

5: Return to choose another row distribution and thence to process another
row.

_' 6. Process according to code word and print the input and output marginal dis-
tributions.

D
The option is described below:

OPTION CODE

1. Conditional ,_robabilities are computed by assuming a binomial condition is

_ satisfactory. Appropriately, the probability that an organism survives an• i event is input initially.

D 2. The conditional distributions are provided one at a t.ime starting at the secondto lowest grid vahe. The distributions are provided in the standard interval
concept.

3. The conditional distributions are provided by inputting two numbers for each

distribution (0, _). Each conditional distribution has the end points a,

Q G(1)* _, G(I) with associated probabilities _ ant 1.-_.

4. A simple scale change is provided here. If the scale factor is q, then the new

standard grid pattern is q * G(1) with the same probabilities.

5. This indicates that a new row probability is to be provided. Essentially this

D restarts the program.

The combinatorial technique is based on the fundamental concept of conditional and marginal
probability. Reference 4 describes the approach.

The combinatorial procedure is at best and explana-

a computer approximation requires 8ome

• tion of the method. Figure 2-1 illustrates the prooodure.

I ' 2-9
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[
GP(I} represents the input probabilities.

G(I) represents the standard grid points. L

PO'--UT(I)isthe output(marginal)proba- cp(,) cP(_) cp(_) [,
bility distribution, o(,) _ o(3) o(,) L', : _ "

I i IPOUT(l) _R(I)IG(2) ! G(3) G(4)[Pno) PR(z)

PR(J)/G(I) describes _e conditional ! i l [probabilities, c(2) ....... ,......,i i
! !

I , EThe conditional distributions in option 1 are c(3) _....... 4!

iPl_(3) I G(4)either generated by the basic binomial recur- _VT(S)

fI

sion formula or the normal approximation to c(4)- .,

the binomial (see Reference 33) if the given

Enumber is greater than 100.
(

r_

Options 2 and 3 require that the conditional k_

distributions, be input via the interval [_

\ concept.

The marginal probability distribution is calculated by D

NST DPOUT(J) = _ GP(I-I) (PR(J)/G(I))
I=J+l

I

The probabilities GP (I) are associated with G(I+I). This appears to be the most conserva- i

tive approach.

$1
It is recommended that the first value for the standard grid be zero. This is consistent with

the concept of the binomial hypothesis, n
mR

2-10 I_ __
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[._ BASIC C)4Rl.qhlOhl_L M'JDEL

NUClBEB. PJ_ E'4U Pgl,q'fS:=4. P,o.P...2_.. If'G_P.

K4)9 pFO_BILIT1E_::.6,.3,. !NU'IBE_,', SIOqDP_D E_D POI.'4TS:=I?*9., !.,5., IG., IE,_*_ If)'i_:.,_Df_.,3_l_q.

RFPD IN CgDE( I-5):=!

SIMPLk" PI.!)R.'_g]ILITY:=.(3,1

FI RST LAST l,qPUT OUTPLq

5. R6_)OF6F+_O I.0_ r_[zf_¢_g+PI g. 333333E- (_2 4. f'88453E- 89

|. RFgtD'_OE+ _ i I. 08F;_8_ +02 |. 74d_,99£- _ 1 4, 59378 IE-82
i. t_P, Pf_E+.q2 I. (_P,f48OE+R3 9. I83673E-P2 0. _(;,g_:l_',OE- _ 1

3. _PI_P_£ ¸�\�4.8_Ro_qE+03@. C'_6)OP_E- 81 P,. f@,9.6008E- 81
,¢. Rf_R_Cgg+ 03 5. _0_8E+03 O. #OF_Og_l._- 0 ! O. O_,;O09_E- 01

PE/_D IN C gD_( |-5):=P

N['MREE, _'_D POINTq F_)R" ( I.faPP_i_E 4���Ä!.ODNDITIONhL PI_OSABILITIES:=I.

Nt+_IBEP, KWO POINTS F:)R ( 5. RO[_80E+@O)==4*O.,2.,3.,5.

,_ CONDITI:)qPL PR)EhSILITIES:=.?*.2,- I
N[I'I;:EE, b'ND FOIqTS FO_ ( I.I_3ROE+OI)==4*R._ I.,5._ IOo

CONOI TI 0 '_Pi. PK_) P AF=ILI TI £S-" =. S, • P, r •NU4BE_, _qD F3INTS FOR ( I-8_O_E+RP.):=3, fq.,3O., I_}_*

CQNDI TIONP, t. I" ,'9 R.P,8I L[ TIES= =.?* • I

._IU_IPFr% F,_II)P'L'I,_ITSgO_ ( l.laOSiaOg+_3):=3, O.,lO8., I(_SR.
G)NDITIO,_PL PR}RARILITIF.S;=.95..R5

NL_RIEb, FND P)I'CT$ FOi_ ( p. f4_ela_g+#13):=3,1a., II_Rf4.,P_8_.CONDI TIONPL p,_OR#I-qLI TIES==. 5.. 5

Nt+.I_IER, F,_/D Ft')I.",IT+_ FOR ( 3.¢_¢fa_aPE+_3}:=3,_.,288_.,38_O.

CO,qDI TI q'.Whl. F_O _/=HI LI TI E.¢.; = I. • _.

Ct)NDI11ONP_. P[¢') R#RILI TI ESI = I.,_lt,'_l_l:'R_, F_ID POINTS F'3R ( 5.¢¢¢¢ItIIr+/_3) Ig:P. PI._,SP.k'I_;.

CONOl TION.aL P_.)BARILI TI ES= = !.

FI RST L AST 1NPUT OUTPUT
_.¢_m_o,E-ei I.I',R/_faaP£+RI_ 8.6|aP.3SE-f}l 9. 136R3P.E-_I
I. ¢,",ROg_OE �_ta5. IIIaRP.P._E 5. 1754 lgg" _a_. 4. '/3P967';'" P,2

g 5. AP+,I_,F,¢I_F* R+a I. CnR_R/_E+/_1 4. eRq 453E- _P. 6.89P67PE-¢%3 ,

l.m+mmt_mE+;_l l.P,_IPl¢IPm_4,1_l_ 4.593"K41E-o_P 3.RIS6,_TF.-f,P
|. flt_pO_,P.,F.+mp I • ¢...1P_ g@E+ R.'t _. R_R_t_F-P. I _. P,,RCA_RE- R I
I. p P._,,+IRI_' �I;,3P. I_".11_f;la P_I;.+F3 F.. 8_a_+SoPg- P I FI. I_II_AgP+£- ¢II

P. Cm'_t_f41=',' g3 3. SmflmRfff:*_'3 ft. (aR_e_O_g-I_ I fJ. OI_RgP_F.." 8 I. +
_. e#po:_¢"p 0:,F4.g ._ a.P.nll_l_ (:IF..+A3 g./_RR_AIIIIr- R I 0. (_Rq'_PCE" P.I. I .

-- ' f

+

,_ 2-11 ,
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PROPORTION, PROBABILITY FOR ( 1.000f')QE+00);=.3,,B

, ,[PROPORTION, PROBABILITY FOR ( 5.0000f_E+QO) l=.5,.65

PROPORTION, PROBABILITY FOR ( 1.0Q000E+Ol)t=.8,,7 _"
LPROPORTION, PROBABILITY FOR ( 1.00(_00E+02)'=.25,. !

PROPORTION, PROBABILITY FOR ( I.OL_OOBE+03);=. I*.001 ril
L,

PROPORTION, PROBABILITY FOR ( 2.0_10(_eE+03);=I., I-

PROPORTION, PROBABILITY FOR ( 3.00000E+03):=I., I. [

PROPORTION, PRO BILITY FOR ( 4.000QOE+03);=|°, I.
]

PROPORTION, PROBk.BILITY FOR ( 5.000(_0E+03)'=I., I, L

INPUT 0 UTPUT _IFI RST LAST
0.000000E-_I I.000(_00E+00 9:,136232E-01 9.266605E-01
I.00000BE+00 5,BI_F_f_80E+00 4. 7329 67E-02 3. 795019 E- 02}

5. _B_000E+00 I.080000E+01 6.890672E-03 4.519 132E-03 r
; I.8@0000E+01 I•000000E+02 3, 215647E-P.2 3, f_8702IE-02 t

I,000000E+ 02 I.I_O_)_C_OE+03 l_.000000E-01 0. 000000E- 01
I._,_OP, E+_3 _. 00000P}E+ 03 0.000000E-01 0. 000000E-01 r
.P,.(/I00000E+03 3. 000000E+03 0. (_80000E-(_l 0.000000E- 01 L

: 3, _0000_E+I_3 4.00l_000E+03 0.000000E-01 0. 000080E-01z).(DOO@BBE+(_3 5- 000000E+ 03 0.000000E- 01 0.000000E- P}l

• {
READ IN CODE(I-5)'=4 .-[i

SCALE FACTOR== 20.'.

FI RST LAST INPUT 0 UTPUT
e, P}e(_O_OE-01 ! • 00(_000E+00 9,266605E-01 4- 633302E'02

/

I,_100000E+ 00 5, 000000E+00 3, 795019E-02 1,85332 IE'el U5. f_Oi_OOBE+.g[_ 1, (_00000E+01 4° 519 132E-03 2, 316651E-01 /

1° _100000E+ 0! 1• 000000E+02 3.087021E-02 5, 012804E-01 _I
!, 0(_0_00E+02 1, 000000E+03 0, 000000E- 01 l, 823923E- 02
1,00DO,DE+R3 2° 000000E+03 0, 000000E-01 1°7 15012E-02
2. 00(_000E+ 03 3, 000000E+03 0, 000000E-'01 0° 000000E-0 I
3, 000000E+ 03 4, 000000E+ 03 0, 000000E- 0 ! 0, 000000E- 0 I

4, 00t_000E+03 5, 000000E °000000E-01 0. 000000E-01 _!

( READ IN CODE(I-S) I=S
NUMBER, ROW END POINT$1m$STOP

READY,

2-12 '.
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0
t 2.4 ADDITION OF RANDOM VARIABLES

A common combinatorial problem is tbe computatioh of the distribution of the sum of two

random variables. This occurs, for example, in the processing of combining row proba-bilities as described in R,-ference 4.

Consider the determination of the distribution of Z = x + y where 0 < x < 10, 0 < y _ 10,

and it is assumed that the probability density functions of x and y are independent. (Thisis a basic assumption that will be made between rows or sources. )

The cumulative distribution

: ffF (Zo) = Pr (Z < Zo) f(x) g(y) dxdy

where R is the space in the x-y plane such that Z < Z .

Y

%

U
_'',I x+y= Z

,'0 ?,,,_ ' _X
: %%

D \Z_I 0

can be explicitly written
The distribution

Zo Zo-X

_(x+y_Zo)=f S f(x) g(Y) dY dx (o _ Zo $ I0)

I-IS



!

10 10

f fPr(x+y < y < Zo) = 1- f(x) g(y) dydx(10 < Z°
Z -10 Z -x

o o

and zero elsewhere, p

1 1

For example, let g(y) = _-_ ; f(x) = _-_ for 0 < x _ 10 and 0 < y < 10. _.

: Then the resulting probabilities from (0 --_20) could be tabulated as follows:

f Interval Probability

0--_ 2 0.02

2"-" 4 0.06 [_

4-*- 6 0.10

(-! 6-_8 0.14
8 "_10 0.18

10"-_12 0.18

12 _ 14 O. 14

14"-_" 16 0.10

16 "-_18 O. 06

18 -_20 O. 02

Z2 2 - Z12
= < lO)where Pr (Z 1 < Z° _ Z2) 200 (0 < Z°

P"(zl _ Zo_ z2) = \ 200 + _ - _ 200 +_ - _]

(10 s: Z° < 201 ,
),

db

If the probabilities f(x) and g(x) where given in more complex form, say as a mixed func- U

) tion defined as constant over prescribed intervals, it is more advantageous from a computer

mtandpoint to develop an algorithm to 'qump" probabilities assigned over prescribed _': ,,--

Intervals into the standard grid pattern. _ /

2-14 _0_ I .
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0
The above problem was checked by using the intervals given above.

The following illustrates the results of a probability "adder. "

The first number is a sum for the resulting probabilities and the following are the proba-.. bilities of Z in the intervals 0--_ 2, 2---_ 4, etc.

LOAD LIMITS 06345 15505
: =6,0-,2.,4-,6._8o* 10.

==6,0. J.2- • 4.* 6. _.8.* 10.I-11*0._2._4.,6.a8-, 10._ 12., 14._16._ 18.,20.
l".2t.2,-2a .21.2

_] ==.2,.2_.2,-2,-2<_UIvi
I .000000E+00 2.000000E-02 6-000000E-02 ! .000000E-01 I °400000E-01
I,800000E-01 I•800000E-01 I•400000E-01 I,00000@F'-._i 6,000000E-02

2.000000E-02

==$STOP
READ'{,

0
_] ELAPSED TIME IN HUNDREDTHS OF HOURS 003

PROBABILITY

5

, , _

C 2 4 8 8 10 x(.y)

D
t+:
r

-_ =-" 4ol
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[
Let the above triangular distribution be approximated by rectangles representing (areas)

F"

approximate probabilities of L

is 14 lO _ _2 [
50 ' 50 ' 50 ' 50 ' 50

Tile analytical probabiliti-s should be (if the above represents both x and y) ._

Interval Probability [

0 _ 2 O.0648 _
t.

2 -'_ 4 O.1656

4 "--'6 0.212 (
t-.

6 _ 8 O.2104

8 --_'I 0 O.1672

10 -'_12 O. 1032

12 "-_14 O.0504

14 ---',--16 O. 02
U

16 -"18 O. 0056 _.
18 ""20 O. 0008

L
where for (0 _ Zo < I0)

Z Z-x _0 0

PrlZ I_Z o_Z21 = o o I
and for 110_ Z° _ 20)

I0 I0

f / 10o'x) (lo'y) dydx"PrlZ l_;z o_z21 = 1- 5-'0

Z°-lO Z°'x i

o !
2-16 _\ , "

!.
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0

10 10

f f 1 (lO-x)(lO-y)dydx"Pr(Z 1.._z ° _ Z2) _: [ - 5"-0"
Z -10 Z - X

_ o o
LOAD LIHITS 063A5 !5505
8=6pGo J20 mdio_ 5o _8,_, 10.

{_ I =6_ G* _.2 ° _,'J. _.6. J,8. J.I 0 °8 =l 1,0..,20 • 4.* 6.,80 • 10.* 12o, 14-,. 16., I 8.,20.
! =.36..2Q*.2.. 12.*0A

{_ I=.36. ,28..2* * 12_ .04SL_
I 000000_E+0_ 6 • AS[_C_OOE-02 I • 656gOgE-Ol 2. 120_09E-01 2.104000E-P;I
I. 6'/2000E-01 I .032_00E-01 5.0dOO_}OE-02 2. 000000E-'82 5. FJ_O_I_)OE-03

8,000_00E-04

D The probabilities thus "_endto "bunch" closer to the lower end of the scale.

For nonlinear frequency distributions, the above procedure is an approximation; however,

the finer the grid, the closer the approximation to the true probability.

From these preliminary studies, a program called "BUGS" was written to handle the

"mixed" (discrete plus continuous cases) probability addition problem. The program was
I

set up to allow a recursive addition of sample spaces. An example follows which illustrates

the addition of four distributions such that the probabilities are discretely defined at 0, 1

and continuously between 1-5 and 5-10. This illustrates the case when the probability of

D low discrete numbers is important enough to be preserved.

g

Q
W--- .... I ' ..... ,
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LOAD LIMITS (_6622 15505

PROGRAM TO FIND PROBABILITY OF SUMS

NUMBER,POINTS FOR FTRST DENSITY:=6,0o,O.,I.,I.,S.,10.

FIRST SET OF PROBABILITIES:=.6,0.,.2,.19,.OI

NUMBER,POINTS FOR RESULTING DENSITY:=lO,0.,Q.*I.,I.*S.*lO.,20.,30.
:=40.,50.

NUMBER,POINTS FOR NEXT DENSITY:=6,0o,O.,I.,I.,5.slR.

NEXT SET OF PROBABILITIES:=.?,Q.,o21,oO82,.OQR

RESULTING PROBABILITIES
4.200000E-01 0.000000E-01 2o660000E-0! 2o722675E-01 3.96125QE-RR
2o!20000E-03

CHECK SUM = l,000000

(_) NUMBER,POINTS FOR NEXT
DENSITY:=6*O-*O.* 1., !., 5., IR.

NEXT SET OF PROBABILITIESz=.61,O.,°13,.I?,.09

RESULTING PROBABILITIES
2.562000E-01 0o000000E'01 2.168600E-01 3o49RRI3E-R! I*A8RAIIE-¢I
2.857413E-02 2.834743E-04

CHECK SUM = 1.000000

NUMBER,POINTS FOR NEXT DENSITYI=6,0.,O.,I.,I.,5.,10.

NEXT SET OF PROBABILITIESI=.?5,O-,oll,oOT, o07

RESULTING PROBABILITIES
I0921500E'01 0.000000E'01 1.908270E'01 30536343E'AI 1.984907E'01
6.R2524IE-02 2.622169£'03 2.343387E'05

CHECK SUM • 1.000000

NUMBER,POINTS F'OR NEXT DENSITYImSSTOP
READY.

t-18

©
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0
0
_J INPUT DI 5TRIBUTI ON5

0.6 0.7--_ 0._1 0.61 0.75

I 0 l 5 10 XI 0 1 5 ]0 X2 0 1 5 10 X3 1 10 X 4

PROI_BTJJTY

D

INTERMEDI ATE RESULlrS 0 1 6 30 1"0Z X 1 4.XI

U
0,116

. 1 . so 1oj xl"xs"x8

fl PIDOIM,mIJ'FY

0
:qNAI. FfJJULTB

I o I . . I.. e . %.%°h.x4

i

_ m I i
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2._o_P_NDE_TPRO_ABILI_S [iIIn the calculation of the distribution of a function of other random variables in general, it

is assumed that the independent variables are stochastically independent and the jointprobability is simply the product.

However, if future needs require the combining of dependent or correlated variables the

calculation could be modified.

A simple example can be described. E

Suppose w_ have 2 distributions given by

(,_ _ Then the distribution of the product of the variables is approximated by

Suppose. however, that the variable B _ m A. How can we describe this? One way __
is to commlder that p (13) IB not oomflmzt but '_varlu" with A. !

\.

!

1969004:372-048



J
J

_ That is, for example, for

_ p(0<B<I) =0"9(0 <A _1) : p (1 _B "-:2) = 0.1

but for

(0 <B _1) =0.2
(1 _A _2) : 1_,

p (I<B _2) 0.8

This indicates that when A is small, B is likely to be small also and vice versa. In this

cas_ the result becomes:

p(0<Z<l)=0.54+0.06 +5.08 =0.61

P(1<Zg2)=O'O6(l_O'PS(1)+0"32(1) =0"1766I

j _ p(2<Z <3) =0.32 =0.1066

• _ p (3 < Z _ 4) = 0.32 = 0.1066

•Thus the independent ca-e c .n be considered as a special case of dependency where p(B) is
unchanged for all intervals of A.

g
It is anticipated that "DELP" for example, will require this treatment, since pitch down

angle and the associated velocity increment conceivably have a correlation.

g

" 11-31
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[
2.6 MARGINAL PROBABILITY CALCULATION rt

Probability input appears to be frequently in the form of the probab.aty of surviving a

specified event. Also the hypothesis that the probability of an organism survivh_g remains f_

unchanged from one organism to another seems to be a reasonable assumption in many cases. U

The marginal distribution of a random vdriable x can be written in density function form as

fl(x) =f f2(y)f(x, y)dy

where y may be thought of as the given random variable and x as the new random variable U

after suffering the effects of _n event.!

Ui

i

Numerically this can be approximated by considering

y in interval form
U

( / wit_ the following distribution:

Pr lY°< Y _ Yl} = PYl
Pr l yl < y < y21 = Py2

_i
Under the binomial hypotheses, the conditional distributions f(x/y) can be generated using

,Jthe numerical techniques in "BINOM" and "BINOIVIX."

The resulting marginal distribution which approximates fl (x) is

I°V° } I
A program called "ICBMAII" was written, which computes fl(x) over integer values for _.
a selected y values up to or less than 100.

1969004372-050



0

i S=.6a,2, ol,.I
ot t =0#3,?_ 55

[_ fl 7,93934_E-RI
! R,?66064E-_2
2 2o337959E-02

3 1,34483_E-_2

4 I,607464E-02

5 1.794576E-_2
6 1.66RI33E-02
? 1.291166E-02

8 8,6_7769E-03

9 4,994631E-R3

10 2.552812E-03
II 1.16R369E-e3
12 4.727429E-_4

13 1o737431E-e4
14 5.791_37E-e5
IS I .75888 IE-85

16 4.88578eE-e6
I? 1,245395E-_6

E] 18 2,921297E-07
19 6,320934E-e8

20 !.264187E-08

21 2o341087E-_9

22 4,_2_48E-le

23 6.4B8772[-II

24 9.494477E-12
2S 1,388128E-12
_6 1.677887E-13
27 2.ee1462E-14

{_ 28 2.223847E-15
, 29 2,308531£-16

38 2o215326E-! ?
_- 31 ! -985e59[- 18

._ 32 1,65421 6E- 19

33 i.281843E-29
34 9-21el12E-22
35 6,14ee?4E-23
36 3,?90169E-2a

,_ 3T 2,162559E-25

38 1.138189E-26
39 5. 512596E-28
40 2.45ee43E-29

41 9- 959524£-31

•] 42 3, 688712E-32
43 1,2391e2E-33
44 3o754856£-35

4S I-e1983?E-36
46 2.463375E-38

47 Se2412P4E-4e
• 48 9.TgS97OE-42

49 1.54e63BE-43

Se 2-e54174£-45
SI 2o231662E-47

52 1-912531[-49
• 53 1.282BSO£-51

$4 4.9$iPleO_E-S4

SS .... 4_r-_6

:1
I.BOOOOOE*OO

//- ) l =SSTOP., R Ir.ADY,

3-115

I - '..................
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n
The results are shown on the previous page for a probability of survival of O. 1: U

If the y values are considered to be mean values for the intervals (0, 1); (1, 5); (5, 10); (10,

100) then the relationship to interval probabilities can be established. If the resulting y n

probabilities are grouped into intervals then the input and output distributions caa be pictured

as follows:

APPROXIMATE PROBABILITY
i

PROBABILITY

0.;
[

o 1 5 lo loo o 1 5 lo loo

RANDOMVARIABLEY RA_DOMV._m_ABT_ X

As might be expected, the. 1 probability has created a "piling up" effect about X=0. In the

event the probability is large, say. 8, the piling effect occurs in two different places and
U

tends to create a bimodal distribution. For the same y distribution two run_ were made for

probability of. 8 and. 5. The approximate results are shown below: _i

i ,

-- $ - o.8 8. O.S
all

O.601 O.62( _ '

0 1 5 10 100 :- _ ;-0 1 6 10 100
\ X RANDOMVARIABLE X RANDOMVARIABLE
J



2, 7 PERIAPSIS DISTRIBUTION DETERMINATION

Reference 5 contains a set of six curves which relate the function Ap/AV to k where:

Ap = periapsis decrement (km)

AV = incremental velocity magnitude (:)

_, =angle of attack (deg.)

These velocities are small (compared to orbital). This is concerned with ejecta that may

enter the Martian atmosphere and thus violate the quarantine. The curves represent a varity

variety of periapsis and apoapsis altitudes. The curves are cosine type and consequently

wer,_ fitted with a finite Fourier series. The result of the curve fitting appears at the end

of this section. The function fitted is of the form:

10

f(_p, _v) =Ap//_ v_-_- = AkCOS v Z + BkSin 9

_i__ where Z- k-9010(90°"k" 270 ° )

0
f (_p, AV) has a double-valued, inverse; however, the point _ = 180 separates to curve into

single valued branches. The interval concept appears to be a satisfactory technique in this
case. A two-segment program called "DELP 1" and "DELP2" was written to compute an

approximation to the distribution of Ap .. AV x f (Ap, AV), given the distributions of k and AV.
The program requires the number of the orbit (1 through 6) and proceeds to select the appro-

priate one. Otherwise, the nature of the input and output is similar to that of the other
programs in the package.

0
A sample run follows. The curve-fitting results are as follows where the cosine terms refer

to the Ak and the sine terms refer to the Bk which incidentally are zero due to the cosine
nature of the curves.

m

........ . .,i-,,.=,,

':,, .'/.,,.:,._,_ ..........
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LOAD LI4I'IS _767F_ 15361

PERIAPSIS DISTRIPUTIO,q PROE-'RAM

,)RHIT TYPE(I-6)::I

,_II_B_:R,P_4GLF ATThCK V_.UES:=7*90. m 120.* 150., 180.,210.,2zz_.,27.G.

#.:WGLI_.PKOBABILITIES, 9_;. TO 27P. t=.29,.2,.PI,.OI,.2,.P9

_I)_IRFE, V/_LUF:S FOR PERI_PSIE DECREM_T:= 11,@., 1000.,2P_0.,300_.

NIIMBER, VALUES FOR VELOCI]Y INCREMENT'=6,0.,_00., 488.,60('.,800o, 100e.

VELOCI IY INCREMENT PROBAEILITIES:=.9,.2,._,.P,.e [

PF:PIAPSI S DECRF.IMENT DI STF<IRUTION

!. _673_2E-0! !. 0378_!E-01 !. 2P9073£- Ol 1. 25338 4E, _3] I. 261699[-01 [
1. P,q_P_GEE- 01 I. 252317E-81 I. P,q9776E- 01 ,q. @3025ziE- 05

(-i
L

' (NEe.<SLi,i= 1.0000_

[
[
[
E

r

B-26
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TYPE 1:

DESIRED NU_IBER OF HARMONICS TO TRY:=GO

DO YOU HISH TO USE MAGNETIC TAPEr TYPE YES OR NO:=NO

'_U TOTAL NUMBER OF DATA POINTS==18
READ IN DATA POINTSI=.25,1oT,3.,4o2*5.4_6oA,7.1_7-7_8-,8"Is8o
:=7.7,7* 1,6-4, 5. _, 4.2_ 3. • I .7

HARMONIC COS TERMS SINE TERMS ERROR SS REMOVED

0 1.059A4AE+OI 0.0000_0E-01 5.0509_IE,02| -3.3_869AE+00 3.3i1308E-07 I.00923RE+_2
2 -7o277126E-01 I.6256ATE-07 A.766_9_E 0	<�3 -2,9_AA45E-01 1o039552E-07 7,8027ROE-O!

4 -1,79111_E-01 9.37555AE-08
2,887_67E-_I

5 -!,40112AE-01 8.947539E-98 I,766833E-01
6 -l.388889E-O! 1.027006E-07 !,736112E-0!

7 -9,AS2752E-02 8,567242E-08 8,0AI907E-028 -7°65_987E-02 7o765082E-08 5o268384E-02
9 -9oAA4452E-_2 0.000000E-01 2°0069_8E-02

1 "

J FINITE FOURIER SERIES
I_ DO YOU WISH TO USE HAGNETIC TAPE_ TYPE YES OR NOI=NO

TOTAL NUHBER OF DATA POINTSSml8
i

U READ IN DATA POINTSg:o2S_i-6_2.?_3.9_S.mS.9p6.6,7.1e?e4n?eSsT.4
lu?. le6-6DS.9JS._3.9_2.7_ 1,6

HARMONIC COS TERHS SINE TERNS ERROR SS REMOVED
8 9,794444E @�•�B.OOOOOOE'OI4*31_90|E ¸*I "3,180466E P�”�3.343161E'078.6SI6OlE*el

"6.714439E'01 I,440733E'07 4,gSTS33E*00
3 "2;6tlIIIE_O! 9.48143_E008 6,136113E'01
4 01,491711E'01 7_948839E'B8 _-002681E°81

"S "1*161407E001 7-6838?BE°GO 1_213980£'8J6 "I*OSSSS6E'OI 8.tSSIg?E'08 I,O02778E'gl
T -I,8@0602E-01 8.96633TE-08 9001O841E-02

B 8 _9,60SITTE_G2 9.180776£'88 8.303348E'O°9 "9-444452E00_ g,OgOOOOE'OI 80006948K'08
,.

0 '-" t

:_ ..+:__ .............. _.._, . .. ,
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DEglR_D HU:_DER OF HAR_;O_ICS TO TRYZ=GO •

_ISH TO USE HAGNETIC TAPE, TYPE YES OR NOs=_O

NU;_BER OF DATA POINTS:=IB

U
DATA POINTSt=.25,1.4_2oS,3oT,_.7*5*6*6,2_6o6_7,*?*I*?**

1=6,6,6,2.5o6.4.?.3-7o2,5,1.4
H4RHON[C COS TERHS SINE TERHS ERROR $S REHOVED

0 9°194444E+00 6-6_0¢0DE'01 3,864201E_02 n
! -2°'94_966E+00 3°il2403E-07 7.784351E+BI U
2 -6o53_Bg6E-01 !°454036_°07 3,83662_E+00
3 -2,722222E-01 9o947438_'08 6°669446E'0!
4 "I;060666E-GI 5,931957E'08 1*012514E'01
5 -l,198379E'gl ?.928457E-08 l°292501E;01 U

6 -7;222224g-02 6.237313E-08 4°69444BE'G2
? "5-586342E'g2 5-9066GOB-g8 2.808649E'62
8 "9-085276['02 8°95d265E'88 ?o42_BglE;02 U
9 "7o22222GE'02 0°00_000E'01 1ol?3613E-g2

0
DESIRED HUMBER OF HARMONICS TO TRYs=GO

WISH TO USE MAGNETIC TAPE, TYPE YES OR NOI=NO

NUMBER OF DATA POINTSI-I8

DATA POINTSI"e25*2,4*4,4*603*8_*goS*IO°T*II°4*II°8*I2° U
mll.8*ll-4,10.T*905*8.*6.3,4.4*2.4

n

HARMONIC COS TERMS SINE TERHS ERROR SS REMOVED
0 1.569444E+01 e.goooooE-oI 1.108420E+03
I -5.086866£+00 S.588665K'07 2.eS6183£+e2
2 .°1,155144E �•�2,578172E-O7I;200922E+01 M
3 "4-2?7178E'01 I*S1989?E'O? I0646945E*80

4 03,OOIg48E-OI 1;479781E-07 8.106742E_01$ "_;253168£'01 I;341112E-07 4,569889[ 81
6 -Io388889£_01 l;043131£-07 1,136112£m01

7, "1_'511513£'81 1.2S0498E'07 8.e56"_3£_81
8 "le888644E'01 I,lS5206E;O? I047684SE el
9 01.277179E'01 o.eooeeoE-oI 3.673617E'09
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TYPE 5:

FINITE FOURIER SERIES

DO YOU WISH TO USE MAANETIC TAPE, TYPE YES OR NO:=NO
TOTAL NUMBER OF DATA POINTS:=I8

READ IN DATA POINTS:=.2S,2.,A.2,6. I,7,?,9. ItlO.3,11.,II.A, IIoS, II.A
:=1'1.*10.3,9.1,7.7t6.1,_.2,2.

HARMONIC COS TERMS SINE TERNS ERROR SS REMOVED
0 1,5_38RgE+_! 0._0_000E-01 I.RI7757K+_3

| -4.891|83E+88 5,5_6868E-07 2,153138E+822 -1.157197E+00 2.SS2923E-R7 I.eR5195E �l�3 -4.58@080E-8! 1.591590E-87 1.822588E+R8

4 -3.137546E-01 1.549804E-07 R.B5977_E-RI
5 -I.722799E-_1 I.R57807E-07 2.67123_E-R!
6 -9,4444A4E-8_ 7.599485E-_8 8._7777E-R2
7 -8o653781E-82 7.955_96E-_R 6.739914E-R_

8 -7.9RAB84E-R2 7.977436E-08 5.6_3733E-R29 -5,000005E-02 0.000000E-81 5.625_IIE-RR

TYPE 6:

DESIRED NUMBER OF HARMONICS TO TRY:=GODO YOU WISH TO USE MAGNETIC TAPE, TYPE YES OR NO==NO

TOTAL NUMRER OF DATA POINTS:=18
READ IN DATA POINTS/=*25*l*3*3.9*S.7,7*6,8*B*9*9,10.?*lI*I_II*A

S=ll.l_lO*7,9*9*fl.8*?.6_S*7,3*9*l.3

HARMONIC COS TERMS SINE "rERMS ERROR SS REMOVED

• I.A394AAE+O! 0.000000E-01 9.32AARIE �°*I -A,944771E+00 5,681179E-07 2,20_569E+02

2 -I.200388E+00 2.695222E-e? !.29683RE 8�È,q 3 -4.94444AE-0l 1.717053E-_7 _.2e_278E+OO

4 -2.284768E-HI 1.161753E-07 4.698150E-AI
S -I.0057S8E-0! 6.827849E-08 9.103944E-A2

-- 6 -?.22221?E-e2 6.1835A3E-08 4.694438E-0_
:_ ? -3.798681E-0_ 4.6egSO3E-08 1.298698E-Oe

8 ?,886461E-02 -3.737432E-08 5.597663E-0_
/ 9 I.OSSSS6E-OI _._OOgO_E-_l 2.S06946E-_R

0
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2.8 MAILS ORBIT T]h_E AND M/CdA DISTRIBUTION

Reference 5 contains two curves relating _.he quantity T/h a (M/CdA) to periapsis altitude

(all distances in km). The terms are: T, orbital lifetime (years}; b a, apoapsis altitude

for the six types of orbits in the periapsis section; and M/CdA, drag parameter.

, -Ap where P is the periapsis altitude for the type ofThe independent variable P = Pa a

orbit under consideration and Ap is the random variable whose distribution has been de-

termined in the periapsis section. Each curve represents extremes in the VM-3 atmosphere

variation. The curves were fit by fitting orthogonal polynomials to _n (T/h a (M/CdA)) VS. P.

That is, each curve was approximated by

e(' ')f(T, ha, M/CdA) = T/h alM/CdA ) = ]_ Bjq)j (P

where @j (P) are orthogonal polynomials of degree J. The shape of the curves indicates

that transforming to/'P would help the approximation, and so this will be attempted at a
!

) later date. The present results do look satisfactory, however. The curve-fitting results

are shown at the end of this section. [

Since the curves are monotonic, the interval technique should be effective. The programs _,
L

titled "TIMF!" and "M/CdAI" were written to provide the distributions of T and M/CdA,

respectively. Obviously, the former approximates the density oil T = ha x (M/CdA) x _.

f (T, ha, M/CdA), while the latter approximates T = hax f (T, ha, M/CdA) "

I.

[In "TIME" the orbit type (1 through 61 and atmosphere type (1 or 2, where 1 is the upper

curve and 2 is the lower curve) are entered initially. The associated ha and Pa are printed

out as a check. Following this the grid and probabilities for P and (M/CdA) are entered,
I,

including the output (T) grid in the usual way. Note that T, M/CdA, and P are all con-

sidered as random variables in each case. A typical run follows.
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READY.

SRUNWAIT,

LOAD LIMITS 07440 15311
TIME IN MARS ORBIT PROGRAM

0
ORBIT TYPE(I-6),ATHOS TYPE(! OR 2):"I.I

_] APOAPS IS(KM ) PER IAPSI S(KM )
i •000000E+04 I •000000E+03

NUMBER, PERIAPSIS VALUES:=3*200._600.,10_O"

PERIAPSIS PROBABILITIES= =.7,. 3

NUMBER, VALUES FOR TIME IN ORBIT==6,0.,5-_lO.*I00''1000"*2000"

NUMBER,, VALUES FOR DRAG PARAMETER==3_I*E-5*I'E'4_IoE'3

DRAG PARAMETER PROBABILITIESS=,4t.6

TIRE IN ORBIT DISTRIBUTION
2.218431 E-01 !. 235655E-01 4.544181E'01 I* 515289E-01 4. 864454E'02

CHECK SUH = 1.000000

REPDY,

kPl T,

Lg_D LIHI15 _.?AA_ 15311

H/CDA DISTRIRUTIO,_ FROGkA_

Q
._PFIT TYPEll-6ltAT._05 TYPE(I OR 211=1• I

_! AFO_PSI SCKM) PERI _PSI $(KM)
I. f_OR_F.E+ RA I. Fi_R_ROE+03

_ ,qb'4 BER• PEEl APSI S V_L UES t = 3• ¢)198.• 600. • ! 060.

i ,, PEEl APSE S Pi_ORABILI TI ESI=o ?_ • 3

RL_vIBER_VRL,L.ES FOR M/CDAIn2fS_ ¢.J 119o• 1190.• 1e190., I. E4a IoE_ Io E6
8= I *ET• I • ERe I • E9 • I • E ! f}P I • E2f_• t. E3PJ* I* E40_ I'* ESIm* l. E60_ I • ET19
Is IoETI* l. ETa• I.ETB

_) NL_IBER, VN..L'ES FOR TIN£ IN ORBI rl-6•O., I._,8.J,3..S.l, I0.

TIME IN ORBIT Pi_OBABILITIESImof_oRJo£_•,2_,2

N/CDA Ol STRI BUTIO,_I
P., 33679. I Eo ElI _.BS_l IFIE-OI 3.8111?OE-BI

CHECK SUN • I. Blm@n19B
J,

| ,-,1
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The curve-fiRing results{or file pair ofcurvcsis shown below: _[.

ORTHOGONAL POLYNOMIAL CURVE FITTING

DO YOU WISH TO USE MAANETIC TAPEs TYPE YES OR NO==NO [
L

TYPE NUMBER OF POINTSsMAXIMLIH DEGREE==?,8

TYPE IN DEPENDENT DATA;=-t3.BtSSt,-5.298317,-I.&R9_3_,.6931472 F
==?.079442,2.995732,3.9120_3,4.382_27,S.fltB635 L
TYPE IN INDEPENDENT DATA;=200.,300.,_OO.,50Q.,&_R.,TRR.,RBR.,9RB.,IBR_'

r

TYPE IN WEIGHTS:=I.*t.*t.,t.,I.,I,_I'*I''I" L

DEPENDENT DATA MEAN

-l.83362tE-Ot [DEGREE ALPHA BETA COEFF S_R
t ._00000E+02 fl,_O_OOE-01 t,961519E-_2 _,30qS_3E+=_
2 6.ROfl_ORE+02 6,6666_?E ��t�-4,R6S703E-055,R9t_R3E+_!

5.|33333E+R4 8.695401E-_6 1._77_9_E+_1 _'3 _,ROOO_RE4 6,0000fl_E �|�4,628571E404-I,711093E-lfl I,TR2STAE+_
L

S 6,00flOORE �|�4,IR6984E+RA3,727533E-I_ 2._?RRSTE-_l
6 6._ROR_OE+02 3.535354E+04 -_._S&t_E-I6 2,394%65K-_ r_I
? 6.ROORRRE+_2 _.832168E+04 5,?&2_5%E-t8 _.93PRATE-R_ |]
8 6,RRfleRBE+B_ 2.R10256E*R4 A,91AII&E-RI _,_S?_AE-_4

DESIRED NUMBER OF POLYNOMIALS TO TRYI=4 L

WHICH ONES==I,2,3,4 [
( i INPUT|=2_.
\

PREDICTED VALUE -I,36955BE+0I
INPUTI:3_. L

PREDICTED VALUE -5.6701_5E �L!INPUTs=4_.

PREDICTED VALUE -1".34RA&_E ”�T#INPUTI=5_,

. PREDICTED VALUE 8.341239E-EI
INPUTS=&8_.

PREDICTED VALUE I,999112E �`'INPUT|=TSO,

PREDICTED VALUE 2.B78955E_
INPUTI=BB_.

PREDICTED VALUE 3.79_E_
|NPIITS=90O,

PREDICTED VALUE 4.638110E_00
INPUTI-IOeO,

PREDICTED VALUE 4,918221EeA_
I NPUTI=I ,£75

........... .. - ,._:_, .... . ,_-_,.,/_.'->"_
,.. _..,- . ,
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DO YOU WISH TO USE MAGPtETIC TAPE, TYPE YES OR NO:=NO

TYPE NUMBER OF POINTS,MAXIMUM DEGREE:=9,8TYPE IN DEPENDENT DATA:=-I3.BI551,-8.111728,-S-29831?,-3-912QR3

:=-2.65926,-I.6_9438,-.5108256,_.,o6931472

TYPE IN INDEPENDENT DATA:=200.,30ff. J4_9.,500-*6ffg.*TBg-*B_R-*90R.,I_O.

"TYPE IN WEIGHTS::I.,I.,I-,I.,I-,I.,I.,I.,I.

DEPENDENT DATA MEAN
-3.913773E+00
DEGREE ALPHA BETA COEFF SSR

I 6.000000E+02 0,000000E-01 1.57_79_r-_ I,AROA2RE+_2 6.0_000E+02 6.666667E+04 -2.496592E-05 1,9;9755E+_!
3 6.00g_9_E+_2 5,133333E+04 5.334886E-_S 4._57A_RE+_

A 6,_90009E+_2 4.628571E+04 -1.37_3E-10 1.10462_E+_o
S 6,00_0_9E+02 4,126984E �Ð�p�2.781683E-131.609A54E-R!

6 6.000000E+02 3,535354E+04 A.BBI966E-16 1.404015E-SR
7 6.WOOSOOE+02 _.B3e16BE+04 _.228_64E-19 4°58]_TE-RA

8 6.0088_8E ”�È�x�2.010_56E+043-018112E-20 1.15R&_3E-R2

0
DESIRED NUMBER OF POLYNOMIALS TO TRY:=4

,_ _ WHICH 0NES:=1,2.3,4
INPUT:=20_,

PREDICTED VALUE -1.375220E+0lINPUT==300,

PREDICTED VALUE -8,267269E+00

U INPUT:=400*

PREDICTED VALUE -5,298967E+_0

U INPUT:=500.
PREDICTED VALUE -3.705065E+0_

INPUTI=600-

B PREDICTED VALUE -2.670190E+_
INPUT:=7_O,

O PREDICTED VALUE -1.715821E+0_INPUT:=80_.

g PREDICTED VALUE -6.8e2930E-_l
INPUT==90_,

PREDICTED VALUE R,612080E-0!

,_ INPUTI=IO_O.

PREDICTED VALUE 6,_66411E-_|

j INPUTI=SSTOP

I 3-33 ft

1969004372-061



I+

2.9 ItELIOCENTRIC TRANSFER CASE [

Reference 5 contains information on the various effects on the Mars impact miss distance

during the transfer orbit phase. This report contains four curves which relate the four [

following quantities to time in days to intercept. [

a. In-plane miss distance due to tangential component of ejection velocity.

T 1

AV T = fl (t) (kin/m ) [
B

b. In-plane miss distmlce due to normal ejection velocity component. [

[
s [,

The results here were multiplied by 103 to obtain the necessary units.

( e. Radiation pressure perturbation to transfer trajectories. [_

r

Two curves (Type I, 1973 and Type II, 1975) L

d. Out-of-plane component of particle miss distance caused by out-of-plane component
of ejection velocity.

Two curves (Type I, 1973 and Type H, 1975). The results here were multiplied
3

by 10 to obtain the necessary units.

Thus the four random variables (A VT, AV N, M/CdA, and DVR) contribute to the Mars

_ quarantine area miss distance, including a bias deliberately programmed into the guidance

. _ system.

o

1-31 !
.,.....,.,7:.,._inllmk_I I I I
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I_ Denoting R and T as the out-of-plane and in-plane components in the impact plane, theimpact point (T I, RII components are given

by T 1 = T 1 ¢ T2 + T 3
R

RI =R.

The miss distance from Mars (Tm, Rm) (TM, RM) (TI, RI)
is given by _\ t_

% #

%. j

d = -T -R )2 ometers) _'\ ,,
m m x e p _.

O T

It is the job of the two segments "HELIO 1"

and HELIO 2- to approximate the distr!but_--
of d, given the above-described random

variables. The four (actually six) curves were fit in the following ways:

a. Orthogonal polynomials were used to fit_,n fl (t) VS_.

b. Orthogonal polynomials were used to fit 10 3 x f2 (t) VS. t

C. Orthogonal polynomials were used to fit _n f3 (t) VS._-(for both curves_

d. Orthogonal polynomials were used to fit 103 x f4 (t) VS t (for both curves).

The results of the fits follow for all six curves. The procedure is fairly simple. The user
inputs the four grids and associated probabilities and the output (d) grid. He also must

J

provide: days to impact, orbit type (I or 2-needed for f3 (t), f4 (t), and the Mars bias
coordinates in the impact plane (in kin. ) The program then samples the appropriate curves

and calculates intervals for:

D a. T1 =_VT x fl(t )

b. T2=aVNX 10$xf2 (t)

_ ¢. T$ = f3 (t)/M/Cd Ad. R - avR I0$ f4(° !-L

!
S--35 i
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L
Thus for n 1, n 2, n3, n. intervals, the prog:am form n1 x n2 x n3 x n4 intervals and computes

d + T2 + T3-T?2 + (R-Rm)2 for each interval. The probability associated with each

interval is the product of the probability for each variable for tke particular intervals concerned.

[
[

D
Q

0

5

2-30
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ORTt OCO nL CURVEFITTING

DO YOU UISII TO USE HAGRETIC TAPE, TYPE YES OR NO|=t_g_n(Tl )_ km

: TYPE NUMBER OF POINTS,NAXIMUH DEGREEt=I3,12 I| AVT m_/

TYPE IN DEPENDEtJT DATA:=I_.81978,|O.732_4,10.63586,10.18667
:=9.21034_8.922658_6.907755_5.857933,4.43_38_,3-931826

==2.944439s2._302585,0 °
TYPE IN INDEPENDENT DATA:=IB,708_9,17.32051,15.81139
==14*!4214_17o24745,10.,7*_71068,5*,3o535534_.5t1.767767

t=1.251998,0o

TYPE IN WEIGHTSt=I.,I.*I**I.*I°*I.*Io*I-_I.aI.*i°*io,le.

DEPENDENT DATA MEAN
3°9494o7E+00

DEGREE ALPHA BETA COEFF SSRI 4.970734E+00 0.000000E-01 6.4365BgE-O| 3.748817E+02
2 I.128421E+0l 4. Ii3012E+Ot -3.821528E-02 2.392741E P�œ�3 9.779519E+00 1°810669E+01 1,998154E-03 1.639684E+00

4 9.675320E+00 2,506573E+01 -2.70BO23E-04 6.134089E-015 9.866702E+00 2.048864E+01 2.481163E-05 !.188942E-0l
6 9.626673E @�ˆ�2.140835E+01-5.069287E-06 8.658075E-02

7 9°838191E+00 1.870377E+01 4.697225E-07 1.422646E-028 9.183295E+00 1.913756E+01 2o004144E-07 T,278603E-02
9 9°748145E+00 1°664577E+01 2.24_74lE-08 8-901758E-03

10 8.043692E+ee 1.640132E+0l -1°189293E-08 _, 132336E-02
P II 1.002555E+0l 1.378526E+01 -6.717493E-09 a.244618E'01
L 12 4.86B961E+O_ 1-!36606E+01 -5.608993E-09 6.941599E-02

ORTHOGONAL POLYNOMIAL CURVE FITTING

DO YOU WISH TO USE MAGNETIC TAPE, TYPE YES OR NO:=NCr 3 T km
10 x 2_

] TYPE NLIMI:}ER OF POINTS,MAXIMtlM DEAREEI=R_? m/B

TYPE IN DEPENDENT DATA;=-zI.6,-,R,3._,6°&,F.P.,7.,_,A._._.

_ TYPE IN INDEPENDENT DATA.'=35Q._3.0Q.,__S(_._,2R_I._.ISR,,10Q.,._.,t_.

TYPE IN HEIGHTS:=I.,I.,Io_I._I._I.,I._I.
DEPENDENT DATA MEAN

2,98750RE+RR

DERREE ALPHA RETA COEFF
R_R

I ! ,750RORE+R2 R,I_C_RRRRE-R| -i ,7RTI43E-qP. _,P,_R_S,aE+r_|
_- 1 • 75RRRRE+02 I • 312501_E+_t4 -.'_0 ! R_R._E-R,4 I °(_4t_o.gE+¢1o

._ 3 I • '750RR(_E+02 I • RP]RRRRE+R4 5, 59596RE-t_7 p,, 9RAa_o_+_ _.,4 ! ,"/50RROIE+_R R,R39_B6E+013 ,q• 9RA24,qE-R9 ! ,t'4RRg'/TE+_
- 5 I ,7500RRE+t47 7,619PlaRE ,zt6_,_67E-I 1 9,.'IA_9aE-_P

6 I • 75¢_¢_E+R2 6 • 1553R3E - 1 • _RBI_R9E- I.'t _, 1R.R_q._R-_I_

7 I ,750ROOE+OP. 4,4_1559AE+(_3 -9,9RATSRE-I_, A,A3IRr_7_-t_ ; -; -

=-s?. "
I I

'_L I._ _ ,_,_'_,
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ORTHOGONAL POLYNOMIAL CIIRVE FITTINr_

on Yn,I!.:ISHTO ,ISEv,r:JETICTAPE• TYPE YEq nR NO:=NO Cn(T3))

TYPE NUF.',qEROF POINTS,;4AXI;.;ilb:DERREE:=7,_
Type I (1973)

TYPE IN DEPENDENT D_TA:=P:.,_7.q3PP•A.9q775q,A.29(_9.q

"==/' • AZ,7,R/-'.4,, 9 • 90859./'39. '_,79/J/l_ _ ._ •

TYPE 1_: IN.13EpEN0_'I"T nn.'_A:=i/,.14Pl/:,lo..o_7z.-_,lr..•7.c71_R_
:=5.•3. lggO78,e.

TYPE l:,I'.'EIP_Tg:=l.•l._l._,l.Jl.•l.•l_,7,.
r

Dr'.PF..,x!_£:'.:T DATA h_E,a._ L.
q.9371q/_£-ql

D_RIZ,K AI.PHg RET_ COEFF SgP f
1 4.87qqqRE-ql q. qqq_qq_-r_ ! c;. 97PqqqF-q I 1 .R1R/'ql ¢¢r° [
9. 1. I 11 _57'r+.:;I _. q01999/,K+ _¢: -5. l-qq7qlE -_,.q ! • I _/'/'/'R=-_" 1
.q q o .qq.9.03 RE+_ f] .P,. _gR 74o.E+qq -9o _oRgs_-'./, .q. _OAgl °r.'-_q im

A .q • &7,qP.3 t,g +P q 9 • 7271a47E+K_q 3.3m119OF -rlz_ /,.119717 _-n° |
kq 7 ° "',. oo'-, n"-'." .,_ ,,,., ..... q -q333_qE+c_o} q. 11.7979F-q/, ')°7ggoq"c'-r'|

f. R.Z'_".Z,6.",C+o.,q 7...q 6,fg71 gb: +.q,'] 9. ':;_ (,9R gr- " r, I ."7_ 17':; ". -_'_

[

_.cT'.l.qr:r,?,_ALpr,l,y,'n.'llnLC/l_:_ FITTIN.O • I (_A [._).3y_a.l!.:'lqqq'q I_" "'A_':'!ETICTAPE• TYPe. YEq '_'_"r.:="n lan(T 3 ) )

TYPE ;-.::r._-_ERrr Pnl.,:'fg•:T._Y.I:.;ll#.:F,E_-_'K:=I_.._,? [ Type II(1975)

TYPr'. !Y _I£.p='Ni"E;VT P.ATA'='q.°r_79z'7,7"'''C_9/:'7"1''''''.. . .,. _,, ,._/, f-.",9Cz.7,':, k
: =6.51 9/'7, 5, q ! I I Z,l ,/,. ql'21 /'! ,q..°9 .r'799.•-_* _ 1 "_'9 _

-" ,O [

TYP_ IN INF_EP=:,'.'.qZ)'TO,3T.3:=lq.7r_,g99•lT.._Qqql• I';.':II"9•I_-I."_'I /

:= 1o. 9._7A5• 1n. •7 •q71P'_":,_. •9 • I e'_"°7q• q. p_
L

TYPE I:" '"EICHT_:=I'•|'•]°•I°•I'•I'•I .•1°•I"_|_'"°

DEPEYnFNT O,_TA ."'^".'-,:,': . fl:
_. 7511 _.qE-el IJ
0.¢ _-,,_ h..L p I {,.A,. -_b:TA _q=_" e, -

I 9, P9qq3qE-_ll _* qqn'_e'ql a. 797_ 7q".-" ! ,q.qTgT. q_'¢+" "_ I_'
2 I ,"3938qE ,(• -"_,_t I _C "1 • 4,q_l _'_? "4" 5_ _ _q=' 'Ô, B
3 l ,"}947._ 1_+_ ! I * 287aJ67E+nl I • a'_F'! n_'''' 7" " ! """ _"-'" " 2

5 I • q75_.? ! "-.+_ ! I * 67_9e_q".+q I p,./. _,o ._< e .-.,'.-. I._='_1_ ".. I¢, ]. ":.go.79.-=."+_' I l. 7,,,c,'_ Ag_+n I - _, a5 ._¢,'_l P..-" _. 7. ] Cr-,'_l =-'"

7 I • e 95 f,_°:.". +" I I • 5a_'9_._+r'l "_"/"'I I "q¢ I F''_7 _" _ I °" I ""'"'qR 1 .t"4lgf_n=+q I ! * 9 e'95q_+'X'l "! • 77ele;r'_"'- _ 7 " * _91"a ?_r'" n I
9 i • e'.',99_1 _+q ! ! ..q??,_q,eg+q I - 7. oe;_q _","-':_ r ._I ?,_ "_" -''=

_-$8

I Ill
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ORTROGONAL POLY_OHIAL CURVE FIITIHGr3
|I DO YOU WISH TO USE HAGNETIC TAPE, TYPE YES OR NOt=NO
kJ

103@.
TYPE NUHBER OF POINTS_MAXIMUH DEGREEt=5s4

TYPE IN DEPENDENT DATA:=B.3s?.4,6,B,3*4*O. TypeI(1978)

TYPE IN INDEPENDENT DATA:=200,tI50*_IOO-_50"tO*
TYPE IN WEIGHTSI=I*sl.tI-,I*_5@-

DEPENDENT DATA MEAN3.870370E-01
DEGREE ALPHA BETA COEFF SSR

1 9.259259E+00 0,000000E-0[ 3,448158E-02 8.366891E+012 1,585039E+02 1,303155E+03 -4,781210E-04 2,921414E+01
3 1.22773_E+02 ],816049E À�”�-3,14|B53E-062,466142E+00

4 1,080396E+02 1,954920E+03 6,000009E-09 1,173576E-02

DO Y(_U |.!ISHTO USE MAP,NETIC TAPE, TYPE YES OR Nn:-Nq

_] 103x

/ #--
TYPENUMBER OF POI_TS_MAXIMUM DEGREE:=.R, 7 Type II (19'/5)

TYPE IN DEPENDENT DATA;=-3.,3.3,_.9,7,TJ, 6*6, A.9sP..7_,
TYPE IN INDEPENDENT bATA:=350,,300,,P..50,,_,r4_,=lS_.*lnrA,,_.r'*Pq.

TYPE IN WEI_HTS:=I*.,I*,I.,I**_*,]*,I.,I.

DEPENDENT DATA MEAN

3 *6375f_OE+O_DEGREE ALPHA BETA COEFF F _R

I 1 • 75_R_f)E+RR El. Oe}_OR_E-R I -?, 595O30E-C}3 7, q 70_.A_.-'x,'(•

Q 3 l • ?50(IROE+R2 l, RRR._r4_E+RA! ,?5_4nS.'gE *\�ˆ�8,S392R6E+_3-8, _._3A_.E-! _ '_,_.7_349 _.-'_"
5 I • "/5('4000E +R_ 7,619RARE+R3 I • .41r_e.5_,E- ! I I • IPRA! 7r-'_l

6 I • "/5O)00_E+_2 6, 1553n3E+_3 7,5._55_,"/E- ! a !, r_9,_,9"/E-_9_ 7 1,750_I_W. -��|�.A.AO559AK+f_3 "9,."t96qg.31_.'lA ._,9889PA_-_

U

t ..:_1_. _ _ ...--._
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WLOAD HELIOI,HELI02

L

LOAD LJl'qI'/_ 11643 13611

HELIOCEL'_klC OkBll PIIOBAE_ILIIY PROGr_AH

f
i.

DAYS 1"0 I_PACI'J OI_EilT TYPE, T*R ,_ARS :=3,1,0.s0.
C

NU,_IBER. TANGENTIAL VELOCITY VALUES:=3.0..5,•i0. L

TANGenTIAL PKO_A_ILITIES:=.8,.2 C
L

NU,_IBERJ NORMAL VELOCIIY VALUES: =3. 0. .5. .10.

N0k.'tAL PROBABILITIES:=.7•.3 [

NULqBER, t_/CDA VALUES:=4, I.E-I• I-E-2* I.E-3, I.E-4
r"

M/CDA PROBABILITIES::. 7,.2,.1 L

NUMBER,, O-O-P VELOCI'IY VALUES::3*0._.5.,IO, I"

0"0- L P_O BAB IL IT1ES := •6, •4 L

NUMBI'-'K, MISS DISTANCE VALUE5:=IO.,O,., 100,• 1000,•l,g4*l,E5sl,g6 I'.
L:=I,ET* 1, E8., I,E9* l,El0

tr
TI/DVT T2/DVN T3 (_vl/CDA) R/DVR C-F |i
I. 593031E+BI 2. 415908E+02 2, 528376E+00 1• 690686E+02

/N-PLANE MISS DISTANCE PROBABILITIES

I. 014702E-02 1.921751E-01 7,269995E-01 7,067839E-02 !."
CHECK SUM = 1°0_0000

[
E

DAYS TO IMPACT• ORBIT TYPE*TaR MARS I=$STOP g
HEADY.

!
0 I

:1-40

t |
......... '_ ,_ 2. ........ ,., ..-.m. ...... - .............. '" '_" '"=="
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ADDENDUM TO HEIIC[, IiEL[O2The segments HELIOS, HELIO2 perform as described in PIR 5540-41.

A new program, to be loaded as HELIO3, tIELIO2, was written to allow the user to input

ejection velocity magnitude and two angles along with drag p_rameter. These four quantitiesare considered to be stochastically independent.

Define a local axis system as N, T, R where N is the local normal of the velocity vector,

T is the local tangent of the velocity vector, and R is the out of (transfer) plane component.

It is along thse three axe_ that the "old" program _ELIO1, HELIO2 considered as iLs
basic input. R (OUT-OF-PI_NE)

e "7
Define

8, polar angle (deg)

cp, N-T plane angle (deg) _ "\ I T {TANGENTIAL)
Z b, :

/ _ ,. :
/_, drag term (slu_2 s ) ,.,, o....-,q 4

N (NOR_mL)The miss distance from the center of Mars is calcul,_.ted as

where T = T1 +T 2+T$'

= C1 V s/n 8 sin _o+ C3 V sl. O cos _o + C31p

I B- c4v co.e

! •
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[
[

and

C1 = TI/AV T [

C2 = T2/AV N [

C3 = T3fl

C4 = R/AV R [

which arc cur;e-fitted results of curves supplied by D.A. Korenstein given as a function [

of "TIME" (days to intercept). [

T M and_ M are the coordinates of the center of Mars in the impact plane. (T, transfer

plane direction and R, out of transfer plane direction. ) [

Note that the T1, T 2, T3 components of velocity are not independent and involve a corn- [i

plete different numerical process as performed in HELIO1, HELIO2. ,,]

The numerical technique involves calculating all 16 possible d's for each combination of

random variable value_ (V,-0, cp, _), choosing the minimum and maximum, and loading E

the associated probabilities by the technique described in tbe writeup of "PLOAD."

Thus, for nl values of V, n2 values of e, n3 values ofrp, and n4 values of _ the program

must calculate d a total of 24(nl-1)x(n2-1)x(n3-1)x(n4-1) times• Also (nl-1)x(n2-1)x(n3-1)x _]

(n4-1) intervals are loaded onto the "d" grid as in the usual manner. I

a

|
4-

S-U

I
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t SAMPLE PROBLEM

U
A time of 5 days to impact was chosen for a TYPE1 orbit and Mars coordinates of (-10.,

-10).

tN
'f'l SSTOP CHECK CASE

U R EADY. • 12/15/66

• _ $LOAD HELIO3, HELI02

LOAD LIMITS 11521 13511
HELIOCENTRIC ORDIT PROBABILITY PROGRAM

- DAYS TO IMPACT, ORalT TYPE, T,R MARS I=5,1,- !0.,'10- .
NUMBER, VELOCITY HAG VALUES(M/S) l=3_ g., 10o,20o •

[l "VELOCITY HAG PROBABILITIESI=.8_.2

NUMBER, POLAR ANGLE VALUES(DEG)I=2,5.,15..

POLAR ANGLE PROBABILITIES==Io.

NUMBER, N-T PLANE ANGLE VALUES(BEG)S=2, S.* 15, •
N-T PLANE ANGLE PROBABILITIESS=io.

Q NUMBER, M/CDA VALUES(SLUGS/FT.FT) ! • E- 3, I • E- 2
;-2,

M/CDA PROBABILITIES;=I. •

NUHBER, MISS DISTANCE VALUES (KM) I" le_,g,_ 100_*288_°* 3eee°J 40Jibe, .
I=580g., 18B_8., I.E$, I-£6, I.E7

]
TI/DVT T2/DVN T3¢M/CDA) R/DVR C-F' _

2; 991216E+el 4,263El29£+02 ._, 496583E4'80 2-8605_7E ð0• **** MISS DISTANCE PROBABILITIES *****

I0 019843['I!1 1, $92986£'el 1-612878E'el I'0 992267E'01 Io 992567E'el
,L_ , 10789764E'81

CHECK SUM • 1.88_E80 i

e . • [ /:[

I I¢' I I
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t

\ 2. i0 ENTRY SURVIVAL PROBABILITY f_

Reference (1) contains a description of the parameterization of the estimated effect of [

heat-time on viable orgmdsms entering the Martian atmosphere.
[

NO. OF SURVIVING ORGANISMS [-

.4 l'd \\ [

[

t"

_ _ l ' "--_ "-. "--. ' ,,-_- "_TIME |

y-
The above diagram illustrates the process, If we have "A" organisms to start with, the

die off will proceed (negative exponential) as is shown in the dotted curves at constant L

temperatures. The history of an entering particle may suffer a heat-time curve in the

heat-time plane as illustrated. [

Reference 1 develops a justification for computing a particular index of the particle history

called the lethality integral (IL). Once IL is computed, the probability of an organism I_i

surviving (to some indicated percentage ) is _,'

, C
CN

Thus ff IL is a random variable itself, the probability of survival can be estimated by

2-44

_ lie _m,
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In Reference 1, 1L is considered to be a function of several parameters. In particular,four seem to be the most important:

e = emissivity

v = initial entry velocity

7 = initial entxT angle

Z = drag parameter

M. A. Martin has demonstrated that the re.'ationship:

p nle IL = 3.34036 - 5.34036 (-_)

where

} where

= ZxlO 4

9o-_%
Y =( loo )

D v 3

[1
is a satisfactory form in his preliminary studies from available data. Appropriately, the

D program "LID" was written to compute the probability distribution of The input is byIL •

the same method of providing grid intervals and probabilities used in other programs.

U
D

i 2-45

,,, ._1 I t t _. I II m i

1969004372-073



.

.

,, [NUHBER, D_.LLISTIC COEFFIC_EN_'S
I =3, 4. E-5, 22.E-5, 4= E=4

BALLISTIC PROBABILITIES [I=.81.2

NUMBER, INITI_.'ENTRY ANGLES r"
I=3,5.* 10.*25. • L
ENTRY ANGLES PROBABILITIES

1-.5,.5

NUMBER, INITIP, L'PARTICLE VELOCITY

I=3, 12e_}o., 13o00., ! 4oo_}..

PARTICLE VELOCITY PROBABILITIES

I=.5,.5N UHRER, EHISSIVITIES
I =3,.2,. 3,. 4

UEHISSIVITY PROBABILITIES
l:-7,,3

(, N_"IBER. LETHALITY INTEGRAL"I=!0, l.g-4, I.E-3, 1. E-2, I.E" !* I.J2-, 5.J 10._. l. E5 *'''_" 1"00. • I.E5

,_,_,_LETHAL I TY PROBABIL I TIES
U

2.934343E-04 2.648213E-03 2.649075E-02 .Io338197E-OL 4.328347E-02
I.298504E-01 1.236249E- 01 3. 835066E-{} i |. 564824E-01

_JT7e4 EOT
SUM = I. 00_}{_00E �D+NUHBER, BALLISTIC COEFFICIENTS _1

! =$STOP -t
READY,. _l

J
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0
2.11 M/CDA SURVIVAL PROBABILITIES

According to Reference 7, one method of determining the distribution of M/CDA that enters

the atmosphere is to generate a distribution of upper limits on M/CDA entering the atmo-

sphere (M/CDA pro_am).

This distribution is then merged with the given M/CDA distribution to determine the survi-

ving distribution of M/CDA that enters the atmosphere.

Define

Z = original a priori random variable
Zul = upper limit random variable

Z a -- resulting "a posteriori" random variable

When a value for Zul = a is given, the conditional distribution for Z

0

0 X _

[I z
can be found by dividing the modified area A. That is the density of Z is modified to form

,(zjz,-o)-
The final distribution becomes:

Q
.z._--_z_._z..,cz]z..g

/"

l 2-47
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!

l
t

The numerical procedure consists of reading the density for Z and Zul in interval probabilit 5,

form and generating the distributing of ZA in the same form by calculating the summation

described above. A program now cxists on the DSCS to perform this calculation.

r

The program is known as "LIMIT". i

To use the program, provide first the upper limit points and related probabilities; next the [

M/CDA points and probabilities and finally the desired put points for the resulting marginal

distribution. [
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2.12 SCALE PROBABILITIES
A program called "HEX" was written, utilizing the interval concept, to compute an estimate

of probabilities of a series of scale-related quantities. These quantities are all associated
with the geometry and mass of a homogeneous spherical particle.

The interval concept is valid when in computing the distribution of a function of several

variables, say _ = f (x1, x 2, ---, Xp), the intervals (or input grid) are chosen small enough
so that _ (j = 1, ...,p) do not change sign in the given p-dimensional regions.5x.

D '
The quantities under consideration are:

0
d, diameter

s, surface area

D z, ballistic parameter (M/CdA)
V, volume
Mt mass

A, cross - sectional area

0 They are all related in such a way that the above restriction "is satisfied. In fact, the functions

I

(30 in all) are all one-to-one for any given interval.

0
The program HEX :,]lows one to compute the probability distribution of function 1 through 6

O given any other. The 30 relaUorm, however, are avoided and reduced to 6 by the suggestion

of E. Berger. Instead, the relations are computed recursively in what may be thought of as

a counterclock wise direction around the rim of a hexagon.

U S d

B

U " ----,,." "" 7 ij
iL....... n m
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[

I_ Thos__unetion_aro_ivonby [
1. Givend: S=rrd 2

2. GivenS: Z= C D r
9rr C 3 |

3. Given Z_ V ='__
L.

5
4. GivenV.: M=V5 F

5. GivenM" A='_ rra #

6. GivenA: d= _'_ [

Where a is the density of the particle _,
and CD is the (unitless) drag coefficient. L

Note that the units cancel out appropriately [

so that it is necessary only that the given r
Lfunction be consistent in units with 5( /

For example ff we start with d = era, then S ts em, g is gin/era (if 5 is gm/cra3), V ts
3 2

em, Misgm, Aiscm , anddiscm. [_

The question may arise concerning the loss of significance encountered in "going around the [_
horn."

This turns out to be no serious problem in the test runs encountered so far. To illustrate }

this, a program was written which, initially calls for 5 and CD. B

Following this, it calls for the code and related functional value. The program then computes
U

"around the horn" to the given function and prints this on the following line,
t

n

In the following runs, no round off was observed out to seven digits.

0 |

i"
B _ m
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r

_J L0_D LIH|T._ 06_31 I776&I=I.E-3, I.E-2
I= I* • 9_;(01 Thai IS _ = . 001. C D _ .01

and d=S _ 7, 4" V " )'[ _ A = '0001

l- (_0¢_0_E- 0 4 Initially

1=3, . _1.

I=6, • _I
1.8_00E-84

P t I=t*.t234567

1.234S67_-01

I=2. • 1234567 He_. _| the lnlIiS!

1.234567E°el _tlty _|ues _

_oeen _ _ -. 1_34_1

t=3_.t_34567

1.234667_'et

Is_.|_34567

[_ |,234567L'_|

O I_S_e|_34S67

1.134&6?i'Ut

Isn_p

_Mm'_

== " ' 1969004372-07
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f
The program usage is simple and is described briefly in the following. __

The program will print the title and code hdtially. [

The first input will be the number (integer) and functional values of the given quantity (in [

the standard grid format). [

Following this is the set of probabilities in the standard interval concept (one less than
knumber of end points).

Next the program calls for three A quantities: given function code (integer), density, and L

drag coefficient (both floating). [

The function code of the desired quantity is then called for (integer).(

b

Finally the number (integer) and functional values of the desired quantity (that is, the output r]
u

grid) are called for.

The resulting probabilities (out to the last non-zero value) are printed.

F

The program will treat this as the input distribution for further calculations. Appropriately L
I

the code and then the related number and functional values are called for. --_1
J

The recursion can be halted by giving a function code _7. The program will then call for a __
U

new input distribution.

A sample series of runs is shown below: fl

• I
The first and second test the ability to restart over for a oalled function oode • 7.

the input distribution. _

97 |,
II II I , ,
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b LOAD LIMITS 07273 16325

PROGRAM TO COMPUTE SCALE PROBABILITIES

FI_'_CTI ON CODE
Is DIAMETER

P, SURFACE AREA

,"4,DRAG PAR_ ETER4, VOLUME
5, MASS

6, CROSS-SECTIONAL AREA

NUMBER, END POINT VALUES==3,1.,2.,3.

D PROBABILITIES==, I,.9
r_IV_ FI_'_CTION CODE, DENSITY* DRAG:=I,2.,3.

D REhD NEXT FL_'qCTION CODE:=2

NI.PIRER, POINTS FOR NEXT DENSITY|=5, O., I.,5.,10.,50*, 100.
I

RESULTING PROBABILITIES
(_. 1_800 .RE- 0 ! 1.9"7183 ! E-_I2 5.305165E-02 9 • 27238l_E- 01

D CHECK SI_ = I. 0_)_f40

READ NEXT FUNCTION CODE==7

D NUMBER, END POINT VALUESI=3, 1,,2*,3:

PROBARILI Tl ESI=, IJ, ,9

FIVEN FUNCTION CODE, D_SII"Ya DRAGI"i_.2,_3,

READ NEXT FUNCTION CODEs'2 '
NUMBER, POINTS FOR NEXT DENSITYl"5_O,_I,*5,_IO,_50,

RESULTING PR_aRABILI TI £SPjo1500000£ 01 1,9"/0831£'02 5, 305 | 65E" OR 9,1272300£'01

p CHECK SUN = 1.08AOAO

s-u
_ =
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[

F_F#D NEXT FUf_CTION CODE-=8

NL'C'_PER,FNI) POINT VALUES'=5,8. t l.s5., I(_.,50° .p
|

P_3qAHILITIES:=. 17C_51F_P,.B294_98, O.,B.
f_

(:IVEN FUNCTION CODE, D6_SITY: DRAGI=3, R.,3. U

REAl) _F×T Ft_qCTION CODE:=6
n

'_lL*_qEt_, PNINTS FiR NERT D6_SITY:=IO,(A., 1.,5., 10.,5(3., 100.,2_.0. U
:= q6_8.,Z_}(_.,5F4F,_.

F_E_ULTIN_ PROBABILITIES U
•',. PS_ _,('lPE- 82 I. A65265E- R! 4. 34675P. E- 02 3. 477_PE, e}! 4. L:x24267E- I?}I

r_IFCK SU:4 = l._nRO_ 0

F_FAD _4FXT F't_'qCTION C']DE:=$STOP

0

Ql
ol
0

|
/
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........... _t .,_ _ .... _, .,n_._ ..i,_w.._---,_lD_tlg_. _ _"_" .%_

"REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.",.

[i
D

An associated program with "HEX" is the program known as "SPHERE".

Th_ b,put is similar to that of "HEX", but the probabilities are not required. Only the

function code, density, drag parameter and end points are needed.

UI The program will provide a spectrum of end points v_lues for all the functions associated
win the given end points. Of course, whatever probability is required will hold for all

I the end point values across each function.
J

I pRO_,_v Trl rn-_ Tr. p._RTIP.L v_ p_-<_',_FT_'_ _-

_INC T I _.'_ CoqEi

qj SrI,RI_._CE aPE_
: 3, r}'?A¢: P#_"'_'TE_
i _m ffnl.t r,"l-

p _11_'_.2 F!rN_.TIn _,, C'_OE, DEx'SITY_ D_'--I,__._..: NUM,qER. POl_'T.q : =5.01. • 1 • _.o. s 3. • ._.

._1. _q_qE- _ 1 .'_. _1qq .q_.. t:,11 q. q_,",oE, q I n. qq,'anc'- a i q. ,'.,q,_. q i ,". _--".q _- _ 1

,- ! ._q_ +q_ 3. l_l_E+_n .q..q333E- n I g.gq_r.-_! !. _._7or.,-e_q 7. %g/n."-n !
q. #l_ q.qE+_q |. 95,%gE+q| A* _._,_7E- q I L,. 1 q q":. c'+,'a'a q..q 77.e.c'* _,_ .q. ! ,_I r..':'+ .q_

,/i. o,.raqq E +q _ _.no_Ji_+q l !..q.q 33 _..+.qq 3..'_K I _E*_,! <. 7e'._ 1_.l-"l ! 1. ,'_-__ c,c ¢,', 1

!. qq_lOF..-qta _. I _.! _.¢'+.'4n 3.3.q.'_3E-'_ i .;. o q _,q,t'- '_.I i. a/?o .c"+_.,,'. 7. _ _..,,-__ _ I

9,9999¢*ql .q, I_1 q _' �€�\�3.3333c'- _,I _*'_q_-_'l I* -/,?o_ • _,_ ?...-.c._-.". - !

• .'a.,_qqr+_ -*. _o7_'4 _ ! i. '_.'_ - :*"" l. J'l "_?¢-'1 ". "aT,*'. +q l "_. "_" ".'-+ "*. <

1

i l"

3-65 *
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i
i

C-IV_._ Ff)NC.TION CC.,]K, _'NSITY., DRAC,:=z),P..,,a.

NUHqKR, Pn !,"ITS•=S, _. _•5P3 5F_,'_.I8_ 9, I'_.137.,.q,q*5r4R

D I_v,ETK P, SvIRF'ACE DRAC V_3LUME H_ SS CRnSS- SEC

9.9999_-_1 q. 1,_15E+_r3 q. q3_3E-_l S. 235F_E-r_ I I. r_/,79_+_ 7. R_qRv-¢_ 1
9.qqq_+q_ ! .9':;67F+F41 6,. _,fi67E-_ 1 ,4. 1889t_+r_q g, q77q_+qr_ 3. ln| 6q+qq
q._qq_+r_q 9. gP7_E+q ! I • (38_E+0_ I ._! _7v+_I O. qo7_'_+r4'l 7 • -_,gqS_+e'r'l _'_

'i ,_.o999E+h_, 5. _P_63_+_ I I. 3333E+B_ 3.35BF_+qI _. 7vlIgV,+Pl! I.'256gv+R I U
|

I "
z

_IUF..N FIINCTION cq.r)E.,DENSITY_, DRA_:=5.,P..,,4,

UNIt:'4_R_, POINTS:-S.F4.. I-rA47q..R-R776,_,_Ro'274'67"t_9|

P IAHF.TF.R S_IRF'ACF. DRAF; VOLUME MAS.q CROSS- .q';'C

1 • qq_q_+_q 3- 1,416E+Q(_ 3.3.q33E-e I ':;. P3_,_E- fal 1. q,_79F+qta 7. _S-_._-q 1 1_
_. 01_qqE+raq 1 .PSA_;E+0] 6. _,667E-R ! ,4.1RFIBE+_r4 R. R776_+_q q. !/,1 _;_+r_r_ U

_IVEN FUNCTION CODE_, DENSITY., DRAP:=R_,P.,_,A. 0

NIP"_ER., POINTS:--5_,..q.,.7RS,qt3_,.q.1,41 6,,7,('46R.g_,IP..SR6 .
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SECTION 3

ENTRY

3.1 INTRODUCTION AND SUMMARY

An approach to evaluate the potential thermal kill of singular bacteria or small aggregates

or clumps during Mars entTy has been outlined in Reference 3-1. The concept of a lethality

integral (IL) permits the calculation of the survival ratio (f) under varied conditions.

In the preliminary investigation of the method reported here, the analysis of the effects offour parameters included: the ballistic coefficient, fl; the entry angle, _E; the entry velocity,

_, VE; and the particle emissivity, e. Within the range of values used for these four parameters,it has been possible to determine an algoritlnn to compute the lethality integral and, hence,

the survival ratio (f)for the effects of any combination of these four parameters.

The development of this algorithm is explained, and the results of the functionalization of

roe auto
Changes made in the choice and the values of the parameters for further investigation of

this approach, now in progress, are mentioned.

Results of calculations made on individual or singular living microbial cells or spores
carried by nonviable particles are given.

D 3.2 SURVIVAL RATIO (D AND LETHALrFY INTEGRAL IL

_, The kinetics of thermal death of microorganisms can be defined by the differential equation

D dN= -K(t') (3-I)
Nd_

If N is the number of living organ/sms at time t, Equation 3-1, expresses that the relative
rate of change of the number of living organisms is a constant depending upon the tempera-

_--_ ture t'.

I 8-1.
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Integration of Equation 3-1 yields

t
j_

-/g(t') dt (3-2)
N _o

f - - e
No

which gives the survival ratio f (ratio of the number N of living organisms at time t to the

number No of living organisms at time to) as a function of the time history t'(t) of the temp-

erature.

If the temperature, t', is constant, Equation 3-2 reduces to (if t -"O)
0

i

f N -K(t') . t (t' = constant) (3-3) t
No

[
In particular, the time r(t') necessary to produce a specified survival ratio fl" at temperature

( _ t'tsgivenby [

-K(t') f (t') [fr = e (t' = constant) (3-4)

f

If the time 1"is known for a specified fT, inversion of Eouation 3-4 yields

K(t') = Inf1"
r(t,) (3-5)

[
In all our equations, the symbol In represents a natural logarithm, and the symbol log

represents a decimal logarithm. _,
!

ReplacIng, in Equation 3-2, K(t') by its value from Equation 3-5 yields
I

f =_ - • r (t,) ..10 to _ (3-e)

L

3-2 -

• -i
I .....
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Ii We can then define a lefilalJty integral I L by
t

[J iL = f dt (3-7)to r(t')

The lethality integral, IL, is the classical "sterility" considered in the food industry
(Reference 3-2).

0
In our investigation, we have Used:

0
fr = 10-12 (3-S)

Hence, in our case, Equation 3-6 can be written

N 10-12 IL
f - No (3-9)

For the purpose of this investigation, we have assumed that any survival ratio smaller

than 10-4 is considered as meeting the planetary quarantine requirement. Consequently,

the range of values of interest for IL is from 0 to 1/3.

n
3.3 DECIMAL REDUCTION TIME (D) AND THERMAL DEATH TIME (F)

Equation 3-3 can be written

N -K'(t9 tf = _ = 10 (t'= constant) (3--10)

with

K'{t') = (log e). K(t') = 0.43429 K(t') (3-11)

The'constant K'(t_ is determined experlmental!y from the memmrement of the survival L
ratio, f, for a known time, t, at the spoofflod tmnlmratttre, t'. Instead of K'(t'), t_ hlo-

logists use/re rec_prooal D(t_, benoe Equstkm 3-10 can be wr/tten

i
I s-s !

. i
__ ..... : ..:,-.,..+-°.:lJnunuuun I ...................................................... -"'_":+"
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t___

( N - D(t')

f = N--_ = 10 (t' = constant) (3-12)

If the time, t, is equal to D(t'), the survival ratio, f, is 1/10; that is, D(t') represents
the time to reduce the number of viable organisms in a population to one tenth of its initial

value, hence the term Decimal reduction time given to D.

When D(t') is known, the time 1"necessary to produce a specified survival ratio fT"is given

by

f'r = 10 D(t') (t w= constant) (3-13)

hence

a
1.- vet,).I-legal (3-14)

- If NO is the initial population and NI- the population at time I", we have

NI" _

-log f1"= -log _o = log No - log N1. (3-15)

Hence

1. = D(t_ [log No - log N1. ] (3-16)

NI" may be interpreted as the probability of having, at time I", one living organism out of _]I
an initial population NO maintained _ constant temperature t.

The Fvahe (t/me to sterilize, more eommon_ referred to as thermal death time} faro/l/at

to the blolog/shs, is derived from the D value by the equatim of Solmaidt (Reference 3-3), I

which can be written, with our notlttlons,

a
. __
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[]
: or by Hobby's modification of Sclullidt's Equation 0{eference 4)

fj
! I

Equation 3-18 differs from Equation 3- 16 only by the term aT. Itobby takes aT equal to 2;

Koestcrcr used tile value 1 for a',, Actually when N_ is specified, the value 0 should be

used for this term. Adding it is equivalent to replacing NT by

-a T

N_ "-- 10 • NT (3-19)

3.4 CURVE T(t') FOR THERMAL RESISTANCE OF DEY SPORES

From D values obtained at temperatures of 80°C, 100°C to 150°C by 5°C increments, and

160°C, (Reference 3-5), and from D values obtained from Decker's work for higher temp-

erature (Reference 3-6), ]%1.Koesterer estab-
, TF_," tr_:t

llshed a cvzwe (Figure 3-1) of T as a function

_i temperature t' for No = and N_ = --._
10-4O[ the 108

that is, for fT = 10-12 as mentioned in Equa- t" •

tton 3-8. . .... : =-=

il
Figure 3-1 is actually a curve of F values. _ _.: _r__k_=:_
Koesterer used the value 1 for aT ; hence,the - L_i_

curve really corresponds to a value I0 -13 ,JliJiJiJf'"' IIi!I

for ft.

[t ,
This fact was d/scovered only recently, and

U s/nee the purpose of this preliminary invest/- m'

gutlon we to develop a method for the func-

g t/onalfzat/on of the lethality/ntegral, IL, the m _, m m m .-

value 12 has been r_tu_l for tlds report.

Figure 3-I. Thermal Ros/stanee of Dry _Correction would Involve replacing 12 by 13 Spores '

_ _ In Equation 3-9 and In all the calculations wklch emsvert IL into values of survival ratios.
The use of 13 rather thin 13 provides eonservaUve estimates for the survival ratic_ _i_

D _J-6 L
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( Arrhenius-Van t'Hoff's theory provides a theoretical ex_pression for D(tf):

Edh
RT

D(t') = A e (3-20)

In Equation 3-20, A is a constant referred to as frequency factor, R is the gas constant,

Edh is the thermal inactivation energy, and T is the absolute temperature (Reference 3-7).

We can transform Equation 3-20 into

aD [
log D(t') = -_- + bD (3-21)

£

The coefficients aD and b D were determined to match Koesterer's curve for the temperatures r

100°C and 160°C. The resulting equation was

1
log D(t') -- T - 11.826 (3-22)

Since, in our case, 1" is equal to 12 times the D value, values of 1"were computed with

Equation 3-22 for values of t' from 80°C to 210°C. The results are shown in Figure 3-1 [,
(dotted line).

[
t can be seen that for high temperatures, the time required to produce a specified survival

ratio is less than that predicted by the kinetic theory. _

3.5 FUNCTIONALIZATION OF 1"(t') L

For the purpose of our investigation, Koesterer's curve (Figure 3-1) was assumed to repre-

sent actual values.

Figure 3-1 represents log 1" as a function of the temperature t'. For t t between 80°C
-_!

_ and 210°C, the curve is a straight line. The portion of the curve fo_ t t between 210oC and
320oc was approximated by a portion of a rectangular hyperbola. |

3-6

i ,
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Specifically, the following functions have been used:

fo
(-0. 089810 t' + 23.443)

r = e for t' _ 210°C (3-23)

-0. 797776 t' + 416. 679
T = e for t' > 210°C (3-24)t' - 155.656

In cur calculations, Equation 3-24 was also applied to temperatures higher than the maximum

temperature (320°C) for which experimental data exist. The reason is that Equation 3-24

still provides reasonable extrapolated values for these higher temperatures. Furthermore,

at 320oc, an exposure time of 0.89 second is sufficient to produce a survival ratio of 10-4;

hence, when that temperature is reached or exceeded during Mars entry, the thermal kill

_, is almost instantaneous. The exact value of n in the survival ratio 10 -n cannot be computed

accurately, but is not pertinent when n is larger than 4.

Table 3-1 provides a synopsis of the quality of the functionalization of 1". Between 100°C

_-_ and 210°C, the % error should be theoretically zero, since Koesterer's curve is a straight

line and Equation 3-23 represents also a straight line when _is plotted in logarithmic scale;

the small errors are due to errors in interpreting the curve.

Table 3-1 shows that for the range of experimental temperatures, the value of Tfunctionalized

by Equation 3-23 or 3-24 does not differ from the observed value by more than a few percent.

fi •Table 3-1. Functtonalization of T

,_, t' t'(oc) 1"(seconds) Percentag( (°C) lr (seconds) Percentage
. Read Calculated of Error Read Calculated of Error

Q 100 1 920 000. 1 910 000. -0.5 260 7.5 7.43
_O_ 9

120 313 000. 317 000. 1.3 270 6.0 5.81 -3. 2
140 51 000. 52 500. 2. 9 280 I. 8 4.73 -!. 5

_. 160 8 _ o0. 8 ,20. 3. 8 290 4.0 3.97 -0. 7
180 1 390. 1. 450. 4. 3 300 3.4 3.42 O.6
200 235. 240. 2. 1 310 3.0 3. O0 O. 0

210 100. 98.0 -2. 0 320 2.66 2.67 0.4

220 43. 5 42.4 -2. 5 340 2.20
230 23. 0 23.0 O. 0 360 1.88
240 14. 3 14.4 O. 7 380 1.66

250 10. 0 10.0 O. 0 400 I. 49

B
8-T

_ , _ ,._._ , _-i ¸: , ,. _ .... t_;_L L ._ ;
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3.6 COMPUTER PROGRAMS FOR DETERMINING IL

The method of determination of a particle temperature during an entry trajectory is des-

cribed in Reference 3-8.

/

A trajectory program is first run with selected JrJitial conditions to provide values of the

free molecular heat flux _IFM (in Btu/ft2-sec) as functions of time. At each instant, _lFM

is proportional to the atmospheric density Pa at the particle position and to the cube of

the particle velocity

qFM "'° Pa V3 (3-25)

The heat balance equation can be written (for a sphere)

dT
qFM + _ _ = K1 •(r T4+K2 rP Cp _- (3-26)

_ In Equation 3-26,

is the solar absorptivity of the particle

S- is the solar constant for Mars (a value of 0. 0653 Btu/ft2-sec was used)

• is the particle emissivity

a is the Stefan-Boltzmann constant (4.76 x 10-13 Btu/ft-sec-°R)

r is the particle radius (ft)

P is the particle density (lb/ft 3)

Cp is the specific heat capacity of the particle (Btu/lb-°R)

T is the absolute temperature of the particle (oR)

.K1 has value 4 for a spherical particle, and r for a cylindrical particle

K2 has value 4/3 for a spherical particle, and lr/2 for a cylindrical particle

3-8
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The hlput to the Thermod_mamics program includes the values of C]FMfor all the thnesnecdcd by the computer program and the value T O of T at the initial time to. At each time
dT

tn, the deriw, tivc _-- is calculated by Equation 3-26, and the value T for the next time is

obtained by integration of this derivative.

A subroutine has been added to the thermodynamics program to compute IL as follows: at

each time tn, the absolute temperature Tn of the particle (in °R} is converted to a value

8 t' n in oc from which W_n is computed from Equation 3-23 or 3-24, by simple change of

sign in the exponent. If IL(n_l) is the value of the integral IL up to the preceding time

tn_ 1, the corresponding value of Tn, the value ILn of IL at tim9 tn is computed, according

to the trapezoidal rule of integration, by

2 + I, (3-27)

The value of ILn for the last value of tn processed by the thermodynamics program repre-
"- sents the lethality integral IL.

0
3.7 PARAMETERS AFFECTING IL

In the preliminary investigation reported here, the particles were assumed to be spherical.

It is shown in Reference 3-8 that the temperatures obtained with cylindrical particles, with

the end effects neglected, are slightly higher than those obtained with spherical particles

and hence produce slightly higher lethality integrals. Consideration of spherical particles

is then favorable to survival of the particle.

Q The particles have been assumed to have a temperature of 500°R at the start of the entry

trajectory, the altitude ho of which has been maintained at the constant value of 721 t 000

feet (entry altitude).

B The VM3 atmosphere has been selected bec_mse it is less dense than the VM8 atmosphere

_) and hence provides conservative estimates for particle survival.

g $-9 75
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The solar absorptivity e has been maintained to 1 (that is, the particle has been assumed

to be in daytime entry and to absorb all the solar energy it receives ),

The particle specific heat capacity Cp has been maintained equal to O. 2 Btu/lb-°R. A

constant drag coefficient cD equal to 2 has been used.

The particles have been assumed to have a constant density equal to 68.6 lb/ft 3 or 2.132

slugs/ft 3.

We have varied only four parmneters:

a. The ballistic coefficient

M

= CDA (3-2s)

(_ where M is the particle mass (in slugs) and A the area (in tt 2) of the particlesection. The ballistic coefficient fl Is related to the particle radius (in feet)
by

M 37r 4 0

- CDA CD " 7rr2 3 CD r (3-29)

hence

3 CD
r - (340)

Since cD and p have been maintained constant, r was determined by the value
of p. -Specifically, the three sets ok values of _ and r we have used are:

fl 4.0 x 10 -5 2.2 x 10 -4 4.0 x 10 -4 slugs/ft 2

r 2.81 x 10-5 1.55 x 10-4 2.81 x 10 -4 feet

These values are in agreement with those of Table 4-1 of Reference 3-8.

B-lO
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b. Five values of the e_ntry angle _/E (angle of the trajectory with the local horizontal
at entry, counted positive dovlnward) have been used:

5 degrees, 10 degrees, 20 degrees, 45 degrees, 90 degrees

] (downward vertical)

c. Five values of the entry velocity, VE have been used:

[1__ 11306, 15000, 19000, 22500, 26000 ft/sec

] d. Nine values of the particle emissivity e have been used:

0.1 to 0. 9 by 0.1 increment

,]
The lethality integral IL is a monotonic function of some of these parameters. Specifically:

IL increases when the entry temperature T O increases

IL increases when the solar absorptivity c_ increases

IL increases when the ballistic coefficient fl increases

._ ; IL increases when the entry velocity, VE increases
IL decreases when the emissivity _ increases

IL decreases when the specific heat capacity (Cp) increases

The variation of IL with the entry angle TE could not be predicted. Effectively, as shown

In Figure 3-2, when 7E increases, the maximum temperature increases, but the duration

of the temperature history which significantly contributes to IL decreases.

3.8 COMPUTER RUNS FOR DETERMINING IL

A total of 75 trajectories was reouired to represent all the possible combinations of three

values of _, five values of TE' and five values of VE. If all the nine possible values of

emissivity, e, had been used for each trajectory, 675 computer runs would have been

necessary. The resulting computer time and manpower necessary to prepare all the input

for the computer runs would have been prohibitively high. Furthermore, a large number of

values of IL would have been outside the range of interest.

)

8-11 "
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2000

CONDITIONS:VM3 = ATMOSPHERE

/_ = 4 x 10 -4 SLUG/FT 2

To = 500 oR I1

aS = 0.0653 BTU/(FT2-SEC)

VE = 11306 FT/SEC

h = 721,0C0 FT f-_

_0o o

r = 2.81x 10 -4 FT

D = 68.6 LBS/FT3

o Cp = 0.2 BTU/(LB-OI_)
- _E=45

,
200 .....

I000

0 ,50 100 150 200
l

TIME (SEC)

Figure 3-2. Temperature Histories

fl

Consequently, computer runs were specified by small batches of 10 to 16. No batch was

specified until the results of the preceding batch had been obtained and analyzed. In that

manner, more educated guesses could be made as additional results became available.

Table 3-2 shows a synopsis of all the computer runs which were made and for which the

lethality integral IL was calculated.

A total of less than 150 computer runs was made, that is, about one-fifth of the number

675 of possible combinations of the four variables. ,

3-12
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3.9 VARIATION OF I L WITH EMISSIVITY ¢. INTERMEDIATE VARIABLE ¢2
r

As _t can be shown in Table 3-2, IL varies quite nonlinearly with _. It was then natural L

to plot log IL as ftmction of IL.

Figure 3-3 shows a few of the curves which were plotted for fl = 2.2 x 10-4 slug/ft 2. It can [
be seen that for IL between 0.01 and 0.3 (range close to the range of interest 0 to 0. 333),

the various curves can be approximated by [
straight lines.

[
We could then define these straight lines by ,.:,..' ...:! ... _1

.: }

two parameters. We selected the value e1
of the emissivity for lL equal to 0.3 and

the value ¢2 of the emissivity for I L equal E

L to0.01, i _ _1
e o4

In order to determine the envelope of these

straight lines, e2 was plotted as function

of e 1. Figure 3-4 shows the result: a

straight line passing thr°ugh the origin.

0
L| L4 0,T L_

This indicated that all the straight lines passed '_"

through a point of the log IL axis, that is, Figure 3-3. Variation of IL with ( D

having for coordinates in Figure 3-3.

• : 0 log ILO = o (3-31) _

0 l-,
8-14

• t
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Effectively, the equation of any of the

straight lJncs is

]
logI L = ae+c (3-32)

Expressing that the line goes through the _',

points(e1, logO.3) and(c2, logO.01) !.

yieldsthe equations

-0. 52288 = log 0. 3 = a e I + e (3-33)

-2. =log0.01 =ae 2+c (3-34)
Q.t

o o.I o.J o.$ 0.4 o.s 0._ o.7 o.m o.I

¢1 (FOR|L o 0 3}

Figure 3-4. Variation of ¢2 with ¢1

From Figure 3-4, we obtained

c2 = 1.38235 E1 (3-35)

Hence

a E1 = -0. 52288 - e (3-36)

a ¢2 = -2 - c (3-37)

and

L

¢2 = a ¢2 -2 -o (3-38)
1.38235 = ¢-_ a¢'-1" " -0.52288-o

)
/

.... /° -

J

$-15

,-___,wr._f_/,-,"_ --_* . _, ' , __= - _s_"
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( Solution of Equation 3-38 yields

c = 3.340 = constant (3-39)

Since all the straight lines of Figure 3-4 passed through the same point defined by EQuations

3-31 and 3-39, each straight line could be defined by a single parameter. We selected e 2.

Elimination of a between Equations 3-32 and 3-34 yields

logI L = c- (c+2) e (3-40)
E2

or

(3-41)
c2 = c - log IL

For each data point (combination 8, TE, VE, [, and corresponding IL obtained by computer

run) it is possible to compute c 2 by Equation 3-41.

The problem was then to express e2 as function of the three remaining variables _, TE and

V E •

The maximum value of E2 of interest is obtained for e - 0. 9 and IL - 1/3 and is 1.244 with

the value of Equation 3-39 used for e.

3.10 VARIATION OF _2 WITH BALL_TIC COEFFICIENT B
, • ul

Figure 3-5 shows a few of the plots of c 3 as fanctim of _. (Figure 3-§ is for VE - 11306

ft/sec only). It was found that every time we had data for lhe three vakzes of B and a value

of • 3 not exceeding 1.244, the tln'ee points belonging to the ease oombhmUou (TE, VE)we_e

on a straight line.

(/

3-16
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B
In other words, within the range of values

for/7 that we have used, e 2 was a linear func-

tion of/3. ..

..
3.II VARIATION OF E2 WITH ENTRY oa

ANGLE (YE) .,

of 7E, but was a linear function of (90° -TE) 2. ., ..... __

This can be shown for instance, in Figure . .......
3-6, which represents curves obtained with .. ._J

OI

This quadratic form of the fanction, with $

symmetry with respect to 90 degrees, can ,.,,,,,,,,,.... .,_....... ,,..,,,.,:,_,,,,

,_ easily be understood: the entry angles 90-_ Ftomare 3-5. Variation of _2 with /_
• _ _ and 90 + _ define two trajectories sym-

metrical with respect to the downward

vertical. _' !. I ]

0 3.12 VARIATION OF ¢2 WITH ENTRY _ _ _i 'i'"

0 tance, In Figure 3-7, which rcpres_ts :__ i__:'_

i
It seems/nteresth:g to compare this de- " " -- " " " " "_-.v_

pe k L t; , ; ,

_ .ndence of]3L on VE3 wlth the depmdlmce ,,m.,

•) of qFM on V as shown in Equation 3-25. Figure $-6. Var/at/olz of Gl with _E

B 3-17
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3.13 FUNCTIONALIZATION Ol_ IL

For convenience, the functions fl, (90 -yE)2' ' ----7 _ i '

and VE :_have been scaled and replaced by ......... I- .....

= 1.4

,oAo, _ ....

J.G --+-

Since e 2 is a linear function cf fl, Y, v ¢

it can be represented by a sum of te_. ms __ I
0._ -- I I- I

of the form I :
_ I

, , , , ,° ,, . ....

VE3 (lOI_ FT$/S_C$I#i ._j_ k , , , , ,,i_o_ lSe_O llOOO 125o0 _6o0¢

VI: (PT/$F+C)

;" in which the exponents i, j, k can take Figure 3-7, Variatic.l of e 2 With VE

velues 0 or 1. Hence ¢2 can be approximated by a stun _2c of eight such terms. Specifically

,,.. = +a 2 fl + a3 _ + a4'V+a 5 fit

e2 = e2c al

.... i

+ a6_v+a 7vB+a 8B_V (3-43)

For each data point fl, T, V can be calculated by Equation 3-42 and e2 by Equation 3-41. We

can then obtain the coefficients of the linear combination (3-43) of known functions, for t

instance, by least square fit.

We have assigned a weight (1 or 0) to each data point. This has permitted us to make bast- g
cally allthe same calculations on all data points, but to eliminate from the least square fit

the data points which did not agree closely enough with the calculated fit. In that manner, I
we processed 119 data points, but considered only 63 data points for determining the least

') square fit. The other 56 points had values of IL larger than 0.333 and hence corresponded i ':

3-18
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to complete kill (survival ratios f smaller than 10-4). For these values of f smaller than

10 -4, the exact value of f was of no interest, as long as it was smaller than 10-4. We
gave a weight of zero to only 3 of the basic 63 data points.

An iterative proces-, operating on the value c, was used to improve the accuracy of

the fit. The procedure can be explained as follows:

For a given value of c (the first value was 3.340), e2 can be computed for each data point

by Equation 3-41 and the values fl, 7, V by (3-42). After all the data points have been

processed, the coefficients a 1 to a 8 of Equation 3-43 are obtained by the classical weighted

least square method. Then for each data point a computed value e2c is obtained by Equation

3-43, a corresponding computed lethality integral ILC is obtained, according to Equation

3-40 by

(c+ 2) e
log ILC = c- (3--44)

¢2c

then

ILC = I0 logILC (3-45)

The corresponding computed survival ratio f is obtained according to Equation 3-9 by
C

fc = 10 -12 ILC (3-46)

For each data point, the residual

AI L = IL - ILC (3-47)
• l

difference between the trite value IL and the computed value ILC is calculated. The ratio

" } between the true survival ratio (f) aud the computed survival ratio (fo) is related to this

residual by

3-19
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-12 _I L' Ef - :J0 (3-48)
c

A weighted root mean squm-e vahe of the residual _I L is obtained for all the N data points

by

W AIL

RMS = n = 1 n
N (3-49)

W
n=l 12

8
W being the weight assigned to the da,'a point of sequential order (n).

T,O

The process is repeated for various values of

(c) until, by trial and error, a practical rain- ,.o [_

imum value is obtained for RMS. Figure 3-8

summarizes the restdts ....

The minimum RMS was obtained with _ "*

c = 2. 87 (3-50) ' ..... U

and had for value "' _
!1,0

RMS = 0.02047 _I
°

L° $,$ 0.0 --I
¢

corresponding to a "root mean square" Figure 3-8. Variation of RMS With cf
ratio "_- equal to 1.75.

° 8
Table 3-3 shows the results of the calculations on each of the 119 data points with the /

value 2.87 for c. In that table the first eight numbers are the coefficients a1 to a8 of

Equation 3-43. The last line shows the numerator and denominator of the fraction in Equation

3-49 and the RMS.

3-20
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Figure 3-9 permits a quick evaluation of the quality of the functional]zation of IL. The

abscissa scales represent the computed lethality integral, ILC, (on logarithmic scale),

and its corresponding computed survival ratio f given by Equation 3-46. The ordinatec

scales represent the residuals AI L given by Equation 3-47, in linear scale, and thef

corresponding ratio _c of true survival ratio to computed survival ratio given by Equation

3-48.

COMPUTE{:) LETHALITY INTEGRAL-ILC

o oo- _ _r _omo o o oo Oo o°'°°" _' _ '_o• • do d d d d d do- _i _: _5__o

0.35 __ I I Ill]ll ] ii4 lllll,_._,_l_i_._.llll•

0.25 " : -7.-

-- 1/200

II100

0.15 1/50
1/20
1/10
1/4

0.05 _ I/2

A ZL=ZL-ZL c 0 "t' ,f*.:.. .: • :" . 2 f/fc

-0.05-- "l" . - 4

• -_

_-_ -

i I I i |

-o_ I , I , , , ILII llll I "

d COMPUTED SURVIVAL RATIO-fc _

Figure 3-9. Rvaluatton of l_nettonalization

The locus of the points corresponding to _ equal to 0. 0001 is the vertical straight line.Q The ]o_us of the points corresponding to f equal to 0. 0001 Is the curved line. For all the

points which are simultaneously to the right of these two lines, the true kill as well as the

computed kill are complete•

1
The two horizontal lines correspond to ratio fc equal to _ and 2. These lines define
the bounds for all the points for which the true survival ratio f is within a factor 2 of the

, [1 computed survival ratio f .
C

g 3 -9-3

I III I I III ' ' ' ' -
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[
It can be readily seen from Figure 3-9 that most of the data points having survival ratio

larger tlmn 10 -4 are wifl:in this band, that is, within this factor of 2 of the computed sur- [

vival ratio. The few points which are not within the band would, however, almost all fall

within a band having a factor of 4 from the computed sulwival ratio (fc). [

F

Since this was only a preliminary im, estigation, no special investigation was made of the [.

few data points which were not within this band defined by a mazimum factor of 4 between

fc andf. _,
t

3.14 CHANGES IN PARAMETERS

This preliminary investigation was conducted mainly t_ determine a procedure for function-

alizing the lethality integ-ral IL. Since then, the foii._,_ving c:,anges in the values or ranges

of some parameters have appeared desirable:

[
-6 -3

a. The range of ballistic coefficient, 8, should cover from 4 x 10 to 4 x 10

b. The entry altitude, ho, should be much higher than the 721,000 feet we have

used. A value of 2,000,000 feet seems to be satisfactory for the range of
ballistic coefficients considered in item a, above.

c. The range of entry angles, _E, should be e.xtended. Viability of particles
entering Mars atmosphere at a very small angle is of concern for the quarantine t_

study.

d. The solar absorptivity, a, should be varied to simulate nighttime as well as
daytime entry into Mars atmosphere and to take into account experimental values
of a which are much smaller than 1.

e. While an initial (equilibrium) temperature of 500°R is reasonable for daytime
entry, a lower initial temperature (183°R, for instance) should be used for
nighttime entry.

i

The influence of these parameters and of these changes in parameter ran_,_,s is being
t

investigated.

8-24 z
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3.15 ORGANISMS CARRIED BY NONVIAF, I,E PARTICLES

Ifwe assume that,duringallthe entrytrajectory,themicroorganism attainsthe same

temperature as thenonviableparticlewhich carriesit,the integral(IL)can be computed

[_ for the particulate carrier (with its own solar abso_ptivity and its own emissivity) and

inferences drawn or implied as to its effect on the microorganism.

0
Results are summarized in Table 3-4.

Table 3-4. IL for Nonviable Particles in Full Sun

_'E = 50 TE = 450 _'E = 900

Material 4x.10 -5 4x10 -4 4x10 -5 4x10 -4 4x10 -5 4x10 --4

Aluminum 11 306 0.0006 14.11 0. 0111 29.80 0.0438 26.28

15 000 0. 0012 2. 034 2.856 .....
Fuzed Silica 11 306 0. 0000 36. 94 0.0315 42.16 0.1824 47.67

15 000 0.0014 4.409 5.448

Haynes-25 11 306 0. 0000 9. 49 0.0986 27.14 0.5332 26.9
15 000 0. 0010 3.128 4.047

. , .
Magnesium 11 306 0. 0001 28.54 0. 0147 36.82 0. 0518 38.89

15 000 0. 0022 2.791 3.651
.--..

_ Epoxy Glass 11 306 5.46 125.20 5.71 68.41 4.66 75.8615 000

For comparing Table 3-4 and Table 3-2, we can consider an equivalent emissivity, cQ,

giving in Table 3-2 the same IL as in Table 3-4 for the same combination (_, TE, VE).

Q It can be seen that an equivalent emissivity, _Q, (between O.1 and 0.3) can be defined
for each of the first four materials. The equivalent emissivity increases with the entry

angle TE: the materials seem to be less sensitive to the change in entry angle than the
microorganism.

The conclusion would then be that any organism carried by the epoxy glass would receive

a heat treatment which would kill it.

. II°!
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SECTION 4

SENSITIVITY STUDIES

] 4.1 INTI1ODUC2ION

The sensitivity studies involve the exercising of the basic math model with inputs from the

basic studies as specifically applied to the Voyagel mission and hardware. The initial

cases shown are primarily designed to illustrate the process for working through the analysis

and showing how the sensitivity of the contamination probability varies with different input

parameters. In many cases the input parameters used have been essentially educated

guesses. The continuing work in this area will use better and better input data, but these

early studies serve to illustrate the areas which are important and require more careful

D analysis as the study proceeds.

Figure 4-1 is a simplified work flow diagram and illustrates holy the sensitivity studies are

related to the Quarantine Task.

0
BASIC STUDIES

_:CRo_rr_:Rclv r_T^ _.._SPECmC APPXaCA_O_TO

MODEL DEVELOPMENT fJTUINE8 STUDIES RECG04MENI_TJON

Figure 4-1. Planetary Quarantine Task Simplified Work Flow DisKram L
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Th t math model format, as illustzated in Figure 4-1, shows how the various sources of con-

tamination are to be analyzed. The basic kill mechanisms are associated with columns.

Each column either requires the development of input or vperatio._ on a particular portion of

the math model.

Figure 4-2 is a detailed computational flow diagram. This flow is for loose particles,

micrometeoroid ejecta, and gaseous emissions, either cold or hot. In this figure rectangles
}

give the output from or input to each column, and six-sided boxes tell what computer pro-

gram is to be used.

Figure 4-3 illustrates how each of the contamination sources will be combined to give the

probabilities of viable organisms reaching and growing on the planet.

]
A few sources have been partially evaluated in a preliminary manner. None of the cases

studied include all of the kill methods. The assumptions used will be stated with the results. f
( _ Caution should be used in gene.mlizing from the results presented. The assumptions must [

always be kept in mind. [

4.2 LOOSE PARTICLES r
Preliminary results on loose particles are given in this section. The initial loading on the L

spacecraft was assu_ ed as shown as curve (A) in Figure 4-,i. Figure 4-4 shows the cumu° r
tlative probability distribution function, whereas most of the other figures in this section are

probability density _unctions. From basic data, VOY-C2-TM3, the total number of loose
|:particles was estimated; then, with distribution of sizes, obtained by the same experimental

investigation and modified to account for the lack of data below 150 microns, an estimate was _-
tmade of the fraction of the total viable organisms on _he particles and was found to be 0. 001.

This then gave the distribution labled (B) in F_gure 4-4 viable organisms on loose particles.

L

(

_-3 I\_
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_t it_1% I F'_ IllY _1_,1% II I_ (,1(I ,_' III %'_D ,l'l{I _ld%_.

Figure 4-2. Detailed Computational
Flow Diagram

L
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Figure 4-5 giws the distributionofparticlediameters used inthe 16oseparticleinvestigation.

An average weight per cubic foot of 68.6 was then assigned for the loose particles. Then,

assuming a sphericalrelntionshipbetween diameter and surfacearea, theprobabilitydensity

I_$$ION FI_OBABILI'L_O} CONTAMINATI_:. ASSESSMENT OF }IFJ_NING

D_NSIT¥ OF KISSION CO_ffA_INATING

f(V13,2) GIVEN V/O'S

KO_ABILITY OF OCCb_h_.NCE(I) _DENSITY OF TOTALV/Of

PIt._A/_ILIT¥ OF OCCtn_ (H)

Figure 4-3. Combination ofContaminationSources

'-functionof surface area was obtained by the
• m .... Xl;v

_tT_aL I_AVCUG

use of program "HEX. " Then, assuming '-, _,._ .......
ow Lo_4t_"A.qTXCLZ_

that viable organisms were distributed in ::

D direct proportion to the surface area of the ....particle and that a loose particle below _r .-

square microns would not carry an organism :"
e.ee

(eince particles below this size approach .. [ _ ®
eN

D the sizeofa microorganism), we obtained ...the fraction of viable organisms on each '"
qtN

,_ range of surface area. This is an important .._'_step because the ballistic characteristic of ....
L

each range o," surface area is different and, -,
., ., ., .;

_] to obtain a good estimate of the viable organ- "=" _*'"

\ isms surviving, these ballistic effects must
Figure 4-4. Cumulative Probability of

be considered. Viable Organisms '

4._§

I I '1
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Figure 4-5. Probability Density Function of Loose Particles E

Figure 4-6 gives the fraction of viable organisms on each surface area range considered.

This assignment is accomplished with a program called "CONCOF." With the fraction of

viable organisms assigned to each range of surface area and using the distribution of total

viable organisms assigned to loose particles, a distribution of total viable organisms on

each size is obtained.

t

|
The next step in the analysis of loose particles Is to investigate both ejection prior to orbit

insertion and ejection during the Mars orbiting phase. _rhe analysis is only shown for those

particles ejected during orbit. The number of loose particles carrying viable organisms

has not been decreased by those leaving prior to reaching orbit insertion; this effect is

subject to the micrometeoroid environment and will be investigated later. For now it is

assumed that all locse particles come off in orbit and at the first aponpsis after insertion so

that they will have a favorable time to decay from orbit to the planet. _
i

4-6
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10 -8 10 .7 100 MICRONS 10 -6 l0 "5 1000 MICRONS 10 -4

suar^cr AREA (SQUARE FT.)\ Figure 4-6. Fraction of Viable Organisms on Particles of Different Sizes

D Under these assumptions, which are conservative, file analysis of orbit mechanics was

D performed for loose particles. Six orbits and two atmospheres were investigated.

Table 4-1 is a summary of the orbits and atmospheres investigated. All of the looseparticles are assumed ejected at apoapsis which gives the largest decrease in periapsis

altitude. The atmospheres are indicative of the expected variation in the VM-3 atmosphereas a function of solar heating of the planet. Atmosphere 1 is the night model; atmosphere 2

is the daylight model. Both models are less dense than the recent atmosphere adopted byJPL; consequently, more conservative from the quarantine viewpoint.

g
!

D 4-_ it*/
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[
! Table 4-1. Orbits and Atmospheres Invcstigated [

Orbit Atmosphere F
1. 1000 x 10, 000 km VM-3 Atmos. Extended by Vachon [

2. 500 x 10, 000 km 1 for 0400 hours (rain density) [.
L3. 200 x 10,000 km 2 for 1400 hours (max density)

4. I000 x 20,000 km _-
L5. 500 x 20,000 km

6. 200 x 10,000 km [

Various ejection velocities and angles of
Lleaving the spacecraft were assumed, The

angles were assumed uniform over 4 7r [-
Lsteradians, and the velocity increment was

that shown in Figure 4-7. These velocities I*

(, _ are to be representative of loose particles L

drifting off of the spacecraft, r:

Programs DELP1, DELP2, and TIME1 were

run to obtain the distribution of time to entry.

Figure 4-8 gives the distribution for the six _

orbits and two atmospheres. Since atmos-

phere 1 is more conservative than the official \

JPL atmosphere, it is the, one which was used ___
o.m o.o= o.os o._ 0.2 o.s Lo

in the investigation. Notice, however, that vzwcrrv (Mrr_s/s_c)
both orbit and atmosphere have significant Figure 4-7. Ejection Velocities _'

effects. Notice also that only one-half of the

loose particles have a chance of gettin; to the planet no matter what the orbit or atmosphere. [_
l

This effect is due to the assumption of untfrom angles of ejection; that is, one half of the R

particles leave at the wrong angles. This effect may be removed when solar pressure is

( _ included in the analysis. From Figure 4-8a it is seen that the probability of a particle [_
KJ

reaching the planet prior to 30 years is for orbit 1O. 00121, type and atmosphere 1. !"

.1/I I I ' _

1969004372-127





.

l.

• [
Based on orbit 1 and atmosphere 1, programs M/CDA and MCED were used to obtain the T
distribution of survivi.g sizes which enter within 30 years; thi_ distribution wa_ then used L

as an input to Program LID, which calculates the probability of surviving entry heating.

The probability calculated was 0. 1722. b

The probabilities of surviving entry heating and entering prior to 30 years are then used on [

the distribution of total viable organisms on each size. The effect of U.V. ' ill and die-off |.

are also assigned. The next result is then obtained by combining each size with its proba-

bility of occurrence. Figure 4-9, shown as a cumulative distribution function as was _a
t2Figure 4-4, gives the preliminary estimate of this process using a probability of entering

0. 00121, a probability of surviving heating of 0.1722, a probability of surviving U.V. of 0.1, [_
Uand a probability of growth and spreading of 0.01.

@ ID9

¢ 119A ' " _ I_ITIAL LOADING
_,_ VIAI_I.E OItGA.'_I,%II! ON I11

,/ LO(_E PARTICLFS UO. H _ VIABLE OIIGANXSM$ O_
[}[ORBITED PARTIC LE_

,_..,..o,,_^._o
AVAILABLE ['OR

O. 94 . - . GItO_'rll ANI) COn-
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C) lllllllll_lp vl J_ul OiOAltll_a Ii
Figure 4-9. Cumulative Probability of Viable Organlsnul M
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I-1 Whcn the final arudysis is conducted, U.V. kill will be entered as a fmtction of particle size

If the particle is 10 microns or smaller, kill will be assigned so that the viable organisms

will have a high probability of being killed. The estimate of 0.1 is a "guesstimate" of theeffects of U.V. The 0.01 growth ,and spreading probability is based on a recommendation

[_ presented to tile last COSPAR meeting by l)r. C.W. Craven and J.O. Light of JPL.

The _ ,k in this section should be considered only as an example of the eomputationa!
procedures and the way in which the quarantine problem can be studied. The actual data

[_ should not be used since the input data in many areas were guesstimates, and, in particular,
the range of M/CDA values under eonsidoration is currently being revised.

4.3 ATTITUDE CONTROL GAS

Figure 4-10 gives the initial nu_' er of viable organisms in the attitude control gas system.This initial number of viable organisms is assumed ejected in proportion to the usage rate

of the attitude control gas as ilh, strated in Figure 4-I 1.

- AJI_AI( GAS FILT(R£O-N(GLIGIIIL[ V.0 IN GAS

- ARI[A Of TANKS * I:).41rTZ

- AFII'A OF TUIIIN@ * 4.4FT z

TOTAl. AIIIA

• MRiKN OF V.O. P(R Z_UI, R[ FOOT IN TANGS I TUalNG

• Tq_AI. _KI Of ¥.0. IN l_e$

_ toO.IW v.o. m _S

[_ Figure 4-10. halt'hi Number of Viable Organisms In Attitude Control Gas System

Q Figures 4-12 and 4.-13 give the l_arameters associated with the size distribution, drag para-

meter (M/CDA), velocity, and ejection angles.

An analysfls was conducted for a period of I day, 5 days before heliocentric encounter. An

i aim point based on the GE Task B study and a type I trajectory was assumed. The resulting

probability of being on an Impact trajectory was obtained as 0. 00153. Flgures 4-14 and 4-15

illustrate the results of applying first the fraction ejected and then the probability of being on

an lmpsot tr_.|ectory. _-

4-1,
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APPROXIMATE RATE

(_) INITIAL STABILIZATION 6.5 LB
(_) MANEUVERS-MIDCOURSE, ORBIT ADJUST, 1.7 LB/MANEUVER

INSERTION ETC.

(_) REACQUISITION r.4ANEUVER O.35LB/MANEUVER

(_ LIP.IIT CYCLE 0.25LB/MONTH

(_) GRAVITY GRADIENT 0.14LB/MONTH [

(_ RESERVE 52.0 LB

[

/

/ | 2 _ 4 5 6 | 2 |OYRS

- TRANSFER ORBIT _,_ MARS ORBIT ._>"

_ it Figure 4-11. Attitude Control Gas Use Profile

I

L

i°isi !!i !i,!o"6.7 iT.t 23.e a

SIZE, MICRONS SPEED(M/S)
I

]-I'; II- I,, I
I

0 45 - 90 135 180

10.5 i ,, POLARANGLE(DEGREES)

0.25 I I. 0.25.... I . L______
• ex_o-e zxJo'S _x_o4

M/CDA (SLUGS/SQ FT) o ,s ,o ,3, ,ao it, zTo 8,s :_

(ASSUMES CD-2) i, PLANEANS'E(,ZGREES)
© Figure 4-12. Size DistribuUon Figure 4-13. Velocity Distribution
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ONE DAY- 5th DAY BEFORE EKCOUNTER

HELIOCENTPIC CASE
I00 I0 I 102 103 104

NO. OF V.O. LEAVINB G/C

I0 | jO3 I0 4 JO5 106

TOTAL NO. OF V.O PRESENT IN ACGS

7 PROBABILITY OF BEING ON IMPACT TRAJECTORY,.OOlB3
EJECTED FRACTION IN DAY • 0.013

i' + I I I
S S 7 8 9 I0

I00 IOI I0_ I0_ I0_ O I Z

NO. OF V.Q LEAVING S/C NO. OF Y,O. BETTING TO MARS ATMOSPHERE;

Figure 4-14. Start Ana" ,sis Figure 4-15. Analysis Continued

Figure 4-16 and 4-17 illustrate the results of the viable organisms surviving entry, U.V.

kill and die-off (gssumed to be 0. 1), and growth and contamination (assumed to be 0.01).

Newly revised estimates of the M/CDA range required use of the entry heating program

p _ outside its original design range for this study. The range of accuracy of this program is/

currently being extended.

0
0
U

D
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Figure 4-16. Analysis Continued
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Figure 4-17. Analysis Continued I_
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PLOAD

, ) 1/13/67'D_'Jb_ CO,'l,.,O,'+ A(I_U • 1'(ll_).,L(l'O6),i,,r(If.;gi).,M

t 0 f_(.)11:) rr_l N'I 2 b b +l:;

_j l:,[_J2_ _2DE[:., }*0i,/Sb'.'l("l PhO0i_aM ]O L.I)/4D PhOBAIzilLIIIES")0_1030 P_INT 2020
0t;_40 21320 FOI.h,IAI("0NUMBEk, OU'IPUT G_ID VALUES")
(-j{:t: 5r:. I I_EALll M, (Z( l ), ] = 1, lq)

£}E,_bf5 :-" i'i:IN'I 20ZI19

+;.J{OCJ5_J :.;EX-l:J:/-L, ZH.. "Irl'l_

_;,{;9_ GF.LL I-',DDEr,(ZL, Li.l, "IPI_)b61,0|.,I vhl,_'l 2(J6[_'
fo_Jllb 2b(,_ PO,_,.',.q'l("(, laESbLIING Pi_OI3_BILI'[IES")

l;Jt'._ ] I b i'ii'l I =,'i- l
I:)i: 121_;, i"l,.l iNI+1: (liJ-'( I )il I- I I ,_,"<1i )

i_..;14L Ib.".'_b,Oi{eiA](IHI)

O_156 60 ]0 2

IdOl "lib 51...b_.;OLI] INE _4i-iL,I_.K(ZL, ZH, "lP!,;)

1 Ek:lPJO t, Of.i,,;O,_ A( I ¢J_.,)* Y( lOb),Z( 1 '60),RP( 100)_¢'10_,19(_ DO llJ l=2i'l_'i
t602 bE; I_ IG'(I- I)=I_,

06_L 1_J 3i-= £rl-/-L

i v( 5)-71s, 8.o,lODe-30 15 viil,_IT 1517..1_
/_'_,2a_ 15_b FOlod_-i'i'("h ll_ilkliV/4L NEGP.'IIVE")

l 009-5_ 60 10 2_' _026_ 2g, DO 30 JL=2.,M
ibm2 "l'_ 1 F ( z ( JL ) - ZL ) 3b, 3 O, 25

b£.,c80 25 LLO t:/=ZL
0029 0 O'I g,'l P= JL
_3a_, Go Io 40
_;_3110 31o co_ i 1_ DE

01_3_ 4D COf,i "I'1 i%t{11£0_33b DO 6f.#J-'JTEHPiM
_fo3 ZiO 1 I" ( £(J) -Zi'i)5_#*45* 45

._ 1_3 5f_ 45 JSAVE=J01d360 £nI GH=ZH
t)I_,370 GO 10 71_

0_390 1) =_:P( J- I)+( (ZHI GH-ZLO I,I)/SP)*TPR
l<P(J-

-- 0 f__lOt_ ZL.O H=Z ( J )
lil_410 60 C0_l I IN LIE

[_bzi20 7B _P(QSAVE-I)=_P(JSI-WE-I)+((ZHIGH-ZLO_)/SP)*TPR_0430 GO 10 10_

IiiI_45_i I b (]L-£(J- 1) )85,82,850646_ 82 RP(J- l ) =ld'(J- I ) +TPi_
Io_47f# GO 1"0 1_l_

_49 f_ 9,_ COi'_1IN UE
llO 5_1:1 P,P( H" 1) =RP( H- 1 ) +TPR

f"_) lif_510 1[_ GONIlNDE,_ 0_52_ 12(_ CONIINUE '
_531) 20_ hgl URN
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IBCMAI_

1/16/67

_00_0 COMMON PHARG( 100),PTOP(100)
00010 COMHON INT(I00)

00030 ! PRINT 1000_1_40 READtNMhX, MMP,X, T,SUH
£0050 READ," ( PTO P( I ), I" I,MMAR)
00060 READ."{INT(I ), I= 1, MM/bX')
0(_070 NMAXP=NH AX+ I
00110 DO 15 I=I,MMAX
00120 15 PTOP( I )=PTOP( I Y/SUM
_013_ DO 20 I=I,NMAXP
00140 20 PHARG(I )=_.
_0150 RAT=T/(I.'T)

010160 DO 4_ K=I,HHAX
00170 N=INT(K)
0018 0 FN=N
00190 X=O.
002f10 PR=( I • - T) _*N
002 ! 0 PMARG( l ) = PMARG( I ) +PR_ PTOP(K )
0022_3 25 I F(X- FN) 30_ _0, 30
00230 30 PR=PR,I,( FN-X)* RAT/( X+ 1° )
00240 X=X+ I *
00250 NX=X+ I
00260 PMARG(NX) =PHARG(NX) �PR,I,PTOP(K)
00270 6O TO 2_5
00280 AO CONTINUE
00290 PRINT 1000
00300 _.000 FORMAT( IH 1)
00310 5S=.0, 1
00320 DO 50 I" I,NNAXP
00330 NI=I" I
La0340 PRINTINI J,PMARG( 1 )
00350 SS= $S I )
00360 50 CONTINUE
003"/0 PRINT 1000

1_380 PRINT! $5

e039o 60 TO !
iwaoo E'_D

A.o

j_ .... L] _ i l IIII I " -,.= "
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MIXED [

1/16/67

OF_BOB COMMON X(100),Y(100),Z(IOO),RP(IOO),M

0(}010 I READ:H, (Z(I),I= IJM)
0(_02(_ 2 READ:ZL, ZH,TPR U
(}0030 CALL ADDER(ZL, ZH, 1PR)

00(}4_ PRINT" (RP(I) •I= l,H) rJ

L(}0(}50 PRINT lO00
OPP)60 !000 FORMAT( IH I)
0(}070 GO TO 9 M

00_8 R END [l
(}0(}90 SUBr,Ot!IINE hDDEI;'(ZL, ZH, TPR) I,J
(}0100 COMMON X(I(}P,),Y(IOO)•Z(I(}(}),RP(I(}O)_M

001 I0 DO I(} .I=2,"4 n
00120 10 RP(I-I)=P. U
00130 SP=ZH-ZL
(}8140 IFi SP) 15•80,20

0(}156 15 PRINT 1500 |]
00160 15{}6 FORHAT("INTERVAL NEGATIVE") u
(}0170 GO TO 2(}0

(}}0180 P.(} DO 3_ JL=2, M Oi00190 I F(Z(JL)-ZL) 30_ 30J, 25

0020(} 25 ZLO k.=ZL !

(}(}210 JTEMP=JL Di

002_o(} GO TO 40
(](}230 3(} CONTINUE

R02,aO 4(} CONTINUE ,_
(}0250 DO 6(} J=JTEMF,M I_
00260 I F(Z(J)-ZH) 50, 45• 45 U
00270 45 JSAVE=J
00280 ZHI GH=ZH
00290 GO TO 70 n
00300 50 ZHIGH=Z(J)
80310 RP(J- I)=RP(J- I)+{(ZHI GH-ZLO W)/SP)*TPR
00320 ZLO W=Z(J) I_
00330 60 CONTINUE 400340 70 RP(JSAVE-I)=RP(JSAVE-I)+((ZHIGH-ZLOW)/SP),TPR
(}0350 GO TO I00 !

00360. 80 IX) 9R J=2, M r_
00370 I F( ZL-Z(J- ! ) )85J, 82J'85 =
00380 82 RP(J-I)=RP(J-I)+TPR
0q390 , 60 TO 100
00400 85 I F(ZL-Z(J))82_OB_90
00410 90 CONTINUE
00415 RP(M" I)=RP(M- I)+TPR
00420 I0_ CONTINUE
00430 120 CONTINUE
00440 2EIO RETURN
00450 _1D

A-IO
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REA AGRID
1/16/67

$L I ST
00000 C234567
00010 C GRID - ROUTINE TO CALCULATE NEW PRO8- TO FIT NORHAL GRID

00020 FUNCTION GRID(MnPROB*O,A,B)00030 DIMENSION Q(I),PROB(I)
00040 GRID = 0°

00050 DO 10 I=l,M00060 IFtQt_)-A) 10,10,5
00070 5 IS : I

00080 GO TO 2000090 10 CONTINUE
00100 20 ATEMP = A
00110 DO 50 K=IS*H

00120 IFtO(K)-B) 25,25,2300130 23 KT = K
00140 GO TO 100

06150 25 GRID = GRID+f(O(K)-ATEMP)/(O(K)-O(K-I)))*PROB(K-I)00160 ATEHP = Q(K)
00170 50 CONTINUE
00180 60 GO TO 500
00190 100 GRID = GRID+((B'ATENP)/(Q(KT)-O(KT-I)))*PROB(KT-I)
00200 500 RETURN
00210 END

002.20 C23456700230 C MAR - ROUTINE TO CALCULATE MARGINAL PROBABILITIES
00240 SUBROUTINE NAR(MMAXsTsPTOP, INTJPMARG)

00250 DIMENSION PTOP(I)*INTtl),PMARG(I)
00260 NHAXP = 101
00270 DO 20 I=I_NMAXP
00280 20 PHARG(I) = 0,0
00290 RAT = T/(I.-T)
00300 DO 40 K=I_MMAX
_0310 N = INT(K)
00320 FN = N
00330 X = 0-0
00340 PR = (I,-T)**N
00350 PMARG(I) = PHARG(I)+PR*PTOP(K)
00360 25 IF(X-FN) 30,40_30
003?0 30 PR = PR*(FN-X)*RAT/(X+I°)
00380 X = X+1-

00390 NX = X+!00400 PMARG(NX) = PNARG(NX)+PR*PTOP(K)
00410 GO TO 25

00420 40 CONTINUE !

00430 RETURN
00440 END

Ao16
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